首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are only a few reports on the relative biological effectiveness (RBE) of thermal neutrons and 10B(n,α)7Li reactions either in vitro or in vivo. The data in this paper summarize almost all previously published in vitro data. Because only a few reactors are available for biomedical purposes, it is difficult to make a comparison of data from experiments using the same kind of radiation, and also to make a comparison of data from experiments using the different kinds of radiations. However, it is indispensable for boron neutron capture therapy to make a radiobiological analysis. More intensive study, including repair process and oxygen effect, is necessary for establishing the fundamental basis of the clinical application of boron neutron capture therapy.  相似文献   

2.
Boron neutron capture therapy (BNCT) is a binary radiotherapy based on thermal-neutron irradiation of cells enriched with (10)B, which produces α particles and (7)Li ions of short range and high biological effectiveness. The selective uptake of boron by tumor cells is a crucial issue for BNCT, and studies of boron uptake and washout associated with cell survival studies can be of great help in developing clinical applications. In this work, boron uptake and washout were characterized both in vitro for the DHDK12TRb (DHD) rat colon carcinoma cell line and in vivo using rats bearing liver metastases from DHD cells. Despite a remarkable uptake, a large boron release was observed after removal of the boron-enriched medium from in vitro cell cultures. However, analysis of boron washout after rat liver perfusion in vivo did not show a significant boron release, suggesting that organ perfusion does not limit the therapeutic effectiveness of the treatment. The survival of boron-loaded cells exposed to thermal neutrons was also assessed; the results indicated that the removal of extracellular boron does not limit treatment effectiveness if adequate amounts of boron are delivered and if the cells are kept at low temperature. Cell survival was also investigated theoretically using a mechanistic model/Monte Carlo code originally developed for radiation-induced chromosome aberrations and extended here to cell death; good agreement between simulation outcomes and experimental data was obtained.  相似文献   

3.
PurposeBoron neutron capture therapy is a cellular-scale particle therapy exploiting boron neutron capture reactions in boron compounds distributed in tumour cells. Its therapeutic effect depends on both the accumulation of boron in tumour cells and the neutron fluence. Autoradiography is used to visualise the micro-distribution of boron compounds.MethodsHere, we present an equation for the relationship between boron concentration and pit density on the solid-state nuclear track detector, taking into consideration the particle ranges in the samples. This equation is validated using liver-tissue sections and boron standard solutions. Moreover, we present a simple co-localisation system for pit and tissue-section images that requires no special equipment.ResultsThe equation reproduces the experimentally observed trends between boron concentration and pit density. This equation provides a theoretical explanation for the widely used calibration curve between pit density and boron concentration; it also provides a method to correct for differences of tissue-section thickness in quantitative autoradiography.ConclusionsUsing the equation together with this co-localisation system could improve micro-scale quantitative estimation in tissue sections.  相似文献   

4.
Chinese hamster ovary (CHO) cells were exposed to thermal and epithermal neutrons, and the occurrence of mutations at the HPRT locus was investigated. The Kyoto University Research Reactor (KUR), which has been improved for use in neutron capture therapy, was the neutron source. Neutron energy spectra ranging from nearly pure thermal to epithermal can be chosen using the spectrum shifters and thermal neutron filters. To determine mutant frequency and cell survival, cells were irradiated with thermal and epithermal neutrons under three conditions: thermal neutron mode, mixed mode with thermal and epithermal neutrons, and epithermal neutron mode. The mutagenicity was different among the three irradiation modes, with the epithermal neutrons showing a mutation frequency about 5-fold that of the thermal neutrons and about 1.5-fold that of the mixed mode. In the thermal neutron and mixed mode, boron did not significantly increase the frequency of the mutants at the same dose. Therefore, the effect of boron as used in boron neutron capture therapy (BNCT) is quantitatively minimal in terms of mutation induction. Over 300 independent neutron-induced mutant clones were isolated from 12 experiments. The molecular structure of HPRT mutations was determined by analysis of all nine exons by multiplex polymerase chain reaction. In the thermal neutron and mixed modes, total and partial deletions were dominant and the fraction of total deletions was increased in the presence of boron. In the epithermal neutron mode, more than half of the mutations observed were total deletions. Our results suggest that there are clear differences between thermal and epithermal neutron beams in their mutagenicity and in the structural pattern of the mutants that they induce. Mapping of deletion breakpoints of 173 partial-deletion mutants showed that regions of introns 3-4, 7/8-9 and 9-0 are sensitive to the induction of mutants by neutron irradiation.  相似文献   

5.
A model has been developed to obtain a better understanding of the effects of boron neutron capture therapy (BNCT) on a cellular scale. This model, the microdosimetry model MICOR, has been developed to include all reactions important for BNCT. To make the model more powerful in the translation from energy deposition to biological effect, it has been designed to be capable of calculating the effectiveness function. Based on this function, the model can calculate surviving fractions, RBE values and boron concentration distributions. MICOR has been used to analyze an extensive set of biological experiments performed at the HB11 beam in Petten. For V79 Chinese hamster cells, the effectiveness function is determined and used to generate surviving fractions. These fractions are compared with measured surviving fractions, which results in a good agreement between the measured and calculated surviving fractions (within the uncertainties of the measurements).  相似文献   

6.
In this article we report the physicochemical characterization of cationic liposomes loaded with orthocarborane and two of its sugar-containing derivatives. Carboranes are efficient boron delivery agents in boron neutron capture therapy, an anti-cancer treatment based on neutron absorption by 10B nuclei. Cationic liposomes were prepared using the positively charged DOTAP and the zwitterionic DOPE, as a helper lipid. These liposomes are currently used in gene therapy for their ability in targeting the cell nucleus; therefore they can be considered appropriate vectors for boron neutron capture therapy, in the quest of reducing the high boron amount that is necessary for successful cancer treatment. Boron uptake was determined by an original in situ method, based on neutron absorption. The structural properties of the loaded liposomes were studied in detail by the combined use of small angle x-ray scattering and small angle neutron scattering. These techniques established the global shape and size of liposomes and their bilayer composition. The results were discussed in term of molecular properties of the hosted drugs. Differences found in the insertion modality were correlated with the preparation procedure or with the specific shape and lipophilic-hydrophilic balance of each carborane.  相似文献   

7.
Preclinical studies are in progress to determine the potential of boron neutron capture therapy (BNCT) for the treatment of carcinomas of the head and neck. Recently, it has been demonstrated that various boronated porphyrins can target a variety of tumor types. Of the porphyrins evaluated so far, copper tetracarboranylphenyl porphyrin (CuTCPH) is potentially a strong candidate for clinical use. In the present investigation, the response of the oral mucosa to CuTCPH-mediated boron neutron capture (BNC) irradiation was assessed using the ventral surface of the tongue of adult male Fischer 344 rats, a standard rodent model. CuTCPH was administered by intravenous infusion, at a dose of 200 mg/kg body weight, over a 48-h period. Three days after the end of the administration of CuTCPH, biodistribution studies indicated very low levels of boron (<2 microg/g) in the blood. Levels of boron in tongue tissue were 39.0 +/- 3.8 microg/g at this time. This was the time selected for irradiation with single doses of thermal neutrons from the Brookhaven Medical Research Reactor. The estimated level of boron-10 in the oral mucosa was used in the calculation of the physical radiation doses from the 10B(n,alpha)7Li reaction. This differs from the approach using the present generation of clinical boron carriers, where boron levels in blood at the time of irradiation are used for this calculation. Dose-response curves for the incidence of mucosal ulceration were fitted using probit analysis, and the doses required to produce a 50% incidence of the effect (ED50 +/- SE) were calculated. Analysis of the dose-effect data for CuTCPH-mediated BNC irradiation, compared with those for X rays and thermal neutrons alone, gave a compound biological effectiveness (CBE) factor of approximately 0.04. This very low CBE factor would suggest that there was relatively low accumulation of boron in the key target epithelial stem cells of the oral mucosa. As a consequence, with low levels of boron (<2 microg/g) in the blood, the response of the oral mucosa to CuTCPH-mediated BNCT will be governed primarily by the radiation effects of the thermal neutron beam and not from the boron neutron capture reaction [10B(n,alpha)7Li].  相似文献   

8.
The energy deposition in the nucleus of cells exposed to the 10B(n, alpha)7Li neutron capture reaction has been calculated and compared to the measured biological effect of this reaction. It was found that a considerable distribution of hit sizes to the nucleus occurs. The comparison of hit size frequency with the observed survival indicates that not every hit, independent of its size, can lead to cell death. This implies the existence of a hit size effectiveness function. The analysis shows that the location of boron relative to the radiation-sensitive volume of the cell is of great importance and that average dose values alone are of limited use for predicting the biological effect of this reaction. Boron accumulating in the cell nucleus is much more efficient in cell killing than the same amount of boron uniformly distributed; its presence in one cell, however, has little effect on its neighboring cells in a tissue. When boron is present on the cell surface of a tissue (as presumably delivered by antibodies), its cell-killing effect is greatly reduced compared to that in uniform distribution. However, in this case much of the dose to one cell comes from neutron capture reactions occurring on the surface of its neighbor cells. These data have implications for the choice of boron carries in neutron capture therapy. The mathematical analysis carried out here is similar to that proposed recently for low-level exposure effects of radiation, taking mutation and/or carcinogenesis as biological effects. The results here show that high-level exposure to high-LET particles (resulting in cell killing) should be treated in an analogous manner.  相似文献   

9.
Preclinical studies for boron neutron capture therapy (BNCT) using epithermal neutrons are ongoing at several laboratories. The absorbed dose in tumor cells is a function of the thermal neutron flux at depth, the microscopic boron concentration, and the size of the cell. Dosimetry is therefore complicated by the admixture of thermal, epithermal, and fast neutrons, plus gamma rays, and the array of secondary high-linear-energy-transfer particles produced within the patient from neutron interactions. Microdosimetry can be a viable technique for determining absorbed dose and radiation quality. A 2.5-cm-diameter tissue-equivalent gas proportional counter has been built with 50 parts per million (ppm) 10B incorporated into the walls and counting gas to simulate the boron uptake anticipated in tumors. Measurements of lineal energy (y) spectra for BNCT in simulated volumes of 1-10 microns diameter show a dose enhancement factor of 4.3 for 30 ppm boron, and a "y" of 250 keV/microns for the boron capture process. Chamber design plus details of experimental and calculated linear energy spectra will be presented.  相似文献   

10.
The boron-containing melanin precursor analogue p-boronophenylalanine (BPA) has previously been shown to selectively deliver boron to pigmented murine melanomas when administered in a single intragastric dose. If boron neutron capture therapy is to become a clinically useful method of radiation therapy for human malignant melanoma, the boron carrier must be capable of delivering useful amounts of boron to remote tumor sites (metastases) and to poorly pigmented melanomas. We have now determined the ability of BPA to accumulate in several nonpigmented melanoma models including human melanoma xenografts in nude mice. The absolute amount of boron in the nonpigmented melanomas was about 50% of that observed in the pigmented counterparts but was still selectively concentrated in the tumor relative to normal tissues in amounts sufficient for effective neutron capture therapy. Single intragastric doses of BPA resulted in selective localization of boron in the amelanotic Greene melanoma carried in the anterior chamber of the rabbit eye and in a pigmented murine melanoma growing in the lungs. The ratio of the boron concentration in these tumors to the boron concentration in the immediately adjacent normal tissue was in the range of 3:1 to 4:1. These distribution studies support the proposal that boron neutron capture therapy may be useful as a regional therapy for malignant melanoma.  相似文献   

11.
Boron-10 concentrations of 20 or 40 micrograms/g were attained in mouse B16 melanomas following one or two intragastric doses of p-boronophenylalanine (750 mg/kg body weight per dose), respectively. Tumor-to-normal-tissue (blood, muscle) boron concentration ratios were 4:1-6:1. The efficacy of boron neutron capture irradiation was monitored using the Wilcoxon two-sample test in conjunction with a system of ranking outcomes of different therapies that compared living mice and mice sacrificed because of excessive tumor growth concomitantly. Median survivals were extended progressively as radiation doses were increased up to 38.7 gray-equivalent (gray X relative biological effectiveness), with one of five and one of six tumors cured in each of the two highest dose groups, respectively. When comparable tumor inhibitory doses of 250-kVp X rays were used to treat these tumors, instead of the transient erythema and edema that resulted from boron neutron capture therapy, there resulted irreversible muscle necrosis in the irradiated zone and atrophy of the foot distal to the irradiated zone. The improvement in treatment outcome with boron neutron capture therapy is attributable to unprecedented tumor-to-normal-tissue radiation dose ratios of approximately 2.8 to 3.6.  相似文献   

12.
The survival curves and the RBE for the dose components generated in boron neutron capture therapy (BNCT) were determined separately in neutron beams at Japan Research Reactor No. 4. The surviving fractions of V79 Chinese hamster cells with or without 10B were obtained using an epithermal neutron beam (ENB), a mixed thermal-epithermal neutron beam (TNB-1), and a thermal (TNB-2) neutron beam; these beams were used or are planned for use in BNCT clinical trials. The cell killing effect of the neutron beam in the presence or absence of 10B was highly dependent on the neutron beam used and depended on the epithermal and fast-neutron content of the beam. The RBEs of the boron capture reaction for ENB, TNB-1 and TNB-2 were 4.07 +/- 0.22, 2.98 +/- 0.16 and 1.42 +/- 0.07, respectively. The RBEs of the high-LET dose components based on the hydrogen recoils and the nitrogen capture reaction were 2.50 +/- 0.32, 2.34 +/- 0.30 and 2.17 +/- 0.28 for ENB, TNB-1 and TNB-2, respectively. The RBEs of the neutron and photon components were 1.22 +/- 0.16, 1.23 +/- 0.16, and 1.21 +/- 0.16 for ENB, TNB-1 and TNB-2, respectively. The approach to the experimental determination of RBEs outlined in this paper allows the RBE-weighted dose calculation for each dose component of the neutron beams and contributes to an accurate inter-beam comparison of the neutron beams at the different facilities employed in ongoing and planned BNCT clinical trials.  相似文献   

13.
Liposomes of phosphatidylcholine or of dimyristoylphosphatidylcholine that incorporate bis-nido-carborane dequalinium salt are stable in physiologically relevant media and have in vitro toxicity profiles that appear to be compatible with potential therapeutic applications. These features render the structures suitable candidate boron-delivery vehicles for evaluation in the boron neutron capture therapy of cancer.  相似文献   

14.
A Monte Carlo simulation study has been carried out to investigate the suitability of neutron beams of various energies for therapeutic efficacy in boron neutron capture therapy. The dosimetric properties of unidirectional, monoenergetic neutron beams of varying diameters in two different phantoms (a right-circular cylinder and an ellipsoid) made of brain-equivalent material were examined. The source diameter was varied from 0.0 to 20.0 cm; neutron energies ranged from 0.025 eV up to 800 keV, the maximum neutron energy generated by a tandem cascade accelerator using 2.5-MeV protons in a 7Li(p,n)7Be reaction. Such a device is currently under investigation for use as a neutron source for boron neutron capture therapy. The simulation studies indicate that the maximum effective treatment depth (advantage depth) in the brain is 10.0 cm and is obtainable with a 10-keV neutron beam. A useful range of energies, defined as those neutron energies capable of effectively treating to a depth of 7 cm in brain tissue, is found to be 4.0 eV to 40.0 keV. Beam size is shown not to affect advantage depth as long as the entire phantom volume is used in determining this depth. Dose distribution in directions parallel to and perpendicular to the beam direction are shown to illustrate this phenomenon graphically as well as to illustrate the differences in advantage depth and advantage ratio and the contribution of individual dose components to tumor dose caused by the geometric differences in phantom shape.  相似文献   

15.
Information on (10)B distribution in normal tissues is crucial to any further development of boron neutron capture therapy (BNCT). The goal of this study was to investigate the in vitro and in vivo boron biodistribution in B16F10 murine melanoma and normal tissues as a model for human melanoma treatment by a simple and rapid colorimetric method, which was validated by HR-ICP-MS. The B16F10 melanoma cell line showed higher melanin content than human melanocytes, demonstrating a greater potential for boronophenylalanine uptake. The melanocytes showed a moderate viability decrease in the first few minutes after BNCT application, stabilizing after 75 min, whereas the B16F10 melanoma showed the greatest intracellular boron concentration at 150 min after application, indicating a different boron uptake of melanoma cells compared to normal melanocytes. Moreover, at this time, the increase in boron uptake in melanoma cells was approximately 1.6 times higher than that in normal melanocytes. The (10)B concentration in the blood of mice bearing B16F10 melanoma increased until 90 min after BNCT application and then decreased after 120 min, and remained low until the 240th minute. On the other hand, the (10)B concentration in tumors was increased from 90 min and maximal at 150 min after application, thus confirming the in vitro results. Therefore, the present in vitro and in vivo study of (10)B uptake in normal and tumor cells revealed important data that could enable BNCT to be possibly used as a treatment for melanoma, a chemoresistant cancer associated with high mortality.  相似文献   

16.
The radiobiological effectiveness of an epithermal neutron beam is described using cell survival as the end point. The M67 epithermal neutron beam at the Nuclear Reactor Laboratory, Massachusetts Institute of Technology, that was used for clinical trials of boron neutron capture therapy was used to irradiate Chinese hamster ovary cells at seven depths in a water-filled phantom that simulated healthy tissue. No boron was added to the samples. Therefore, this experiment evaluates the biological effectiveness of the neutron and photon components, which comprise 80-95% of the dose to healthy tissue. Cell survival was dependent upon the depth in the phantom, as a result of moderation and attenuation of the epithermal neutron beam components by the overlying water. The results were compared with 250 kVp X irradiations to determine relative biological effectiveness values. Cell survival as a function of the dose delivered was lowest at the most shallow depth of 0.5 cm, and increased at depths of 1.5, 3, 4, 5.6, 6.6 and 8.1 cm. The gradual increase in cell survival with increasing depth in the phantom is due to the exponential drop of the fast-neutron intensity of the beam. These results are applicable to clinical boron neutron capture therapy Phase I/II trials in which healthy tissue toxicity was an end point.  相似文献   

17.
Quantitative ion microscopy of freeze-fractured, freeze-dried cultured cells is a technique for single cell and subcellular elemental analysis. This review describes the technique and its usefulness in determining the uptake and subcellular distribution of the boron from boron neutron capture therapy drugs.  相似文献   

18.
The objective of the present study was to construct epidermal growth factor receptor (EGFR) targeting cetuximab-immunoliposomes (ILs) for targeted delivery of boron compounds to EGFR(+) glioma cells for neutron capture therapy. The ILs were synthesized by using a novel cholesterol-based membrane anchor, maleimido-PEG-cholesterol (Mal-PEG-Chol), to incorporate cetuximab into liposomes by either surface conjugation or a post-insertion method. For post-insertion, the transfer efficiency of MAb conjugates from micelles to liposome was examined at varying temperatures, mPEG2000-DSPE ratios, and micelle-to-liposome lipid ratios. Following this, the cetuximab-ILs were evaluated for targeted delivery of the encapsulated boron anion, dodecahydro-closo-dodecaborate (2-) (B12H122-), to human EGFR gene transfected F98EGFR glioma cells as potential delivery agents for boron neutron capture therapy (BNCT). In addition, cellular uptake of cetuximab-ILs, encapsulating a fluorescence dye, was analyzed by confocal fluorescence microscopy and flow cytometry, and boron content was quantified by ICP-MS. Much greater ( approximately 8-fold) cellular uptake of boron was obtained using cetuximab-ILs in EGFR(+) F98EGFR compared with nontargeted human IgG-ILs. On the basis of these observations, we have concluded that cholesterol can serve as an effective anchor for MAb in liposomes, and cetuximab-ILs are potentially useful delivery vehicles for BNCT of gliomas.  相似文献   

19.
Boron-containing agents play a key role in successful boron neutron capture therapy (BNCT). Icosahedral boron cluster-Arg-Gly-Asp (RGD) peptide conjugates were designed, synthesized, and evaluated for the biodistribution to develop tumor-selective boron carriers. Integrin αvβ3 is an attractive target for anti-tumor drug delivery because of its specific expression in proliferating endothelial and tumor cells of various origins. We, therefore, selected a c(RGDfK) moiety recognizing αvβ3 as an active tumor-targeting device to conjugate with icosahedral boron-10 clusters, disodium mercaptododecaborate (BSH) or o-carborane as a thermal neutron-sensitizing unit. Preparation of o-carborane derivatives involved microwave irradiation, and resulted in high yields in a short time. An in vitro cell adhesion assay on αvβ3-positive U87MG and SCCVII cells demonstrated the high binding affinity of conjugates to integrin αvβ3 (IC(50)=0.19-2.66 μM). Biodistribution experiments using SCCVII-bearing mice indicated that GPU-201 showed comparable tumor uptake and a significantly longer retention in tumors compared with BSH. These results suggest that GPU-201 is a promising candidate for use in BNCT.  相似文献   

20.
Measurement of boron concentration in biological tissues is a fundamental aspect of boron neutron capture therapy, because the outcome of the therapy depends on the distribution of boron at a cellular level, besides on its overall concentration. This work describes a measurement technique based on the spectroscopy of the charged particles emitted in the reaction 10B(n,α)7Li induced by thermal neutrons, allowing for a quantitative determination of the boron concentration in the different components that may be simultaneously present in a tissue sample, such as healthy cells, tumor cells and necrotic cells. Thin sections of tissue containing 10B are cut at low temperatures and irradiated under vacuum in a thermal neutron field. The charged particles arising from the sample during the irradiation are collected by a thin silicon detector, and their spectrum is used to determine boron concentration through relatively easy calculations. The advantages and disadvantages of this technique are here described, and validation of the method using tissue standards with known boron concentrations is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号