首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MeCP2, whose methylated DNA-binding domain (MBD) binds preferentially to DNA containing 5Me-CpG relative to linear unmethylated DNA, also binds preferentially, and with similar affinity, to unmethylated four-way DNA junctions through the MBD. The Arg133Cys (R133C) mutation in the MBD, a Rett syndrome mutation that abolishes binding to methylated DNA, leads to only a slight reduction in the affinity of the MBD for four-way junctions, suggesting distinct but partially overlapping modes of binding to junction and methylated DNA. Binding to unmethylated DNA junctions is likely to involve a subset of the interactions that occur with methylated DNA. High-affinity, methylation-independent binding to four-way junctions is consistent with additional roles for MeCP2 in chromatin, beyond recognition of 5Me-CpG.  相似文献   

2.
Methyl-CpG-binding protein 2 (MeCP2) is a multifunctional protein involved in chromatin organization and silencing of methylated DNA. MAR-BD, a 125-amino-acid residue domain of chicken MeCP2 (cMeCP2, originally named ARBP), is the minimal protein fragment required to recognize MAR elements and mouse satellite DNA. Here we report the solution structure of MAR-BD as determined by multidimensional heteronuclear NMR spectroscopy. The global fold of this domain is very similar to that of rat MeCP2 MBD and MBD1 MBD (the methyl-CpG-binding domains of rat MeCP2 and methyl-CpG-binding domain protein 1, respectively), exhibiting a three-stranded antiparallel beta-sheet and an alpha-helix alpha1. We show that the C-terminal portion of MAR-BD also contains an amphipathic helical coil, alpha2/alpha3. The hydrophilic residues of this coil form a surface opposite the DNA interface, available for interactions with other domains of MeCP2 or other proteins. Spectroscopic studies of the complex formed by MAR-BD and a 15-bp fragment of a high-affinity binding site from mouse satellite DNA indicates that the coil is also involved in protein.DNA interactions. These studies provide a basis for discussion of the consequences of six missense mutations within the helical coil found in Rett syndrome cases.  相似文献   

3.
4.
5.
6.
7.
Most cases of Rett syndrome (RTT) are caused by mutations in the methylated DNA-binding protein, MeCP2. Here, we have shown that frequent RTT-causing missense mutations (R106W, R133C, F155S, T158M) located in the methylated DNA-binding domain (MBD) of MeCP2 have profound and diverse effects on its structure, stability, and DNA-binding properties. Fluorescence spectroscopy, which reports on the single tryptophan in the MBD, indicated that this residue is strongly protected from the aqueous environment in the wild type but is more exposed in the R133C and F155S mutations. In the mutant proteins R133C, F155S, and T158M, the thermal stability of the domain was strongly reduced. Thermal stability of the wild-type protein was increased in the presence of unmethylated DNA and was further enhanced by DNA methylation. DNA-induced thermal stability was also seen, but to a lesser extent, in each of the mutant proteins. Circular dichroism (CD) of the MBD revealed differences in the secondary structure of the four mutants. Upon binding to methylated DNA, the wild type showed a subtle but reproducible increase in alpha-helical structure, whereas the F155S and R106W did not acquire secondary structure with DNA. Each of the mutant proteins studied is unique in terms of the properties of the MBD and the structural changes induced by DNA binding. For each mutation, we examined the extent to which the magnitude of these differences correlated with the severity of RTT patient symptoms.  相似文献   

8.
9.
X Nan  R R Meehan    A Bird 《Nucleic acids research》1993,21(21):4886-4892
MeCP2 is a chromosomal protein which binds to DNA that is methylated at CpG. In situ immunofluorescence in mouse cells has shown that the protein is most concentrated in pericentromeric heterochromatin, suggesting that MeCP2 may play a role in the formation of inert chromatin. Here we have isolated a minimal methyl-CpG binding domain (MBD) from MeCP2. MBD is 85 amino acids in length, and binds exclusively to DNA that contains one or more symmetrically methylated CpGs. MBD has negligable non-specific affinity for DNA, confirming that non-specific and methyl-CpG specific binding domains of MeCP2 are distinct. In vitro footprinting indicates that MBD binding can protect a 12 nucleotide region surrounding a methyl-CpG pair, with an approximate dissociation constant of 10(-9) M.  相似文献   

10.
11.
12.
13.
Mass spectrometry-based hydrogen/deuterium exchange (H/DX) has been used to define the polypeptide backbone dynamics of full-length methyl CpG binding protein 2 (MeCP2) when free in solution and when bound to unmethylated and methylated DNA. Essentially the entire MeCP2 polypeptide chain underwent H/DX at rates faster than could be measured (i.e. complete exchange in ≤10 s), with the exception of the methyl DNA binding domain (MBD). Even the H/DX of the MBD was rapid compared with that of a typical globular protein. Thus, there is no single tertiary structure of MeCP2. Rather, the full-length protein rapidly samples many different conformations when free in solution. When MeCP2 binds to unmethylated DNA, H/DX is slowed several orders of magnitude throughout the MBD. Binding of MeCP2 to methylated DNA led to additional minor H/DX protection, and only locally within the N-terminal portion of the MBD. H/DX also was used to examine the structural dynamics of the isolated MBD carrying three frequent mutations associated with Rett syndrome. The effects of the mutations ranged from very little (R106W) to a substantial increase in conformational sampling (F155S). Our H/DX results have yielded fine resolution mapping of the structure of full-length MeCP2 in the absence and presence of DNA, provided a biochemical basis for understanding MeCP2 function in normal cells, and predicted potential approaches for the treatment of a subset of RTT cases caused by point mutations that destabilize the MBD.  相似文献   

14.
15.
16.
17.
Engineering a high-affinity methyl-CpG-binding protein   总被引:1,自引:0,他引:1  
Core members of the MBD protein family (MeCP2, MBD1, MBD2 and MBD4) share a methyl-CpG-binding domain that has a specific affinity for methylated CpG sites in double-stranded DNA. By multimerizing the MDB domain of Mbd1, we engineered a poly-MBD protein that displays methyl-CpG-specific binding in vitro with a dissociation constant that is >50-fold higher than that of a monomeric MBD. Poly-MBD proteins also localize to methylated foci in cells and can deliver a functional domain to reporter constructs in vivo. We propose that poly-MBD proteins are sensitive reagents for the detection of DNA methylation levels in isolated native DNA and for cytological detection of chromosomal CpG methylation.  相似文献   

18.
19.
Although mammalian MBD3 contains the mCpG-binding domain (MBD) and is highly homologous with the authentic mCpG-binding protein MBD2, it was reported that the protein does not bind to mCpG specifically. Using recombinant human wild type and mutant MBD3 proteins, we demonstrated that atypical amino acids found in MBD3 MBD, namely, His-30 and Phe-34, are responsible for the inability of MBD3 to bind to mCpG. Interestingly, although H30K/F34Y MBD3 mutant protein binds to mCpG efficiently in vitro, it was not localized at the mCpG-rich pericentromeric regions in mouse cells. We also showed that Y34F MBD2b MBD, which possesses not the mCpG-specific DNA-binding activity but the nonspecific DNA-binding activity, was localized at the pericentromeric regions. These results suggested that the mCpG-specific DNA-binding activity is largely dispensable, and another factor(s) is required for the localization of MBD proteins in vivo. MBD3 was identified as a component of the NuRD/Mi2 complex that shows chromatin remodeling and histone deacetylase activities. We demonstrated that MBD3 MBD is necessary and sufficient for binding to HDAC1 and MTA2, two components of the NuRD/Mi2 complex. It was therefore suggested that mCpG-binding-defective MBD3 has evolutionarily conserved its MBD because of the secondary role played by the MBD in protein-protein interactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号