首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Summary The host-controlled K restriction of unmodified phage was 10-100-fold alleviated in the wild-type strain E. coli K12, carrying plasmid pKM101 of incompability group N. pKM101-mediated release of K restriction was also observed in lexA -, recA -, and recB - strains of E. coli K12. By restriction mapping Tn5 insertions in pKM101, which reduced pKM101-mediated alleviation of restriction, were shown to be located within the BglIIB fragment approximately 11 kb anticlockwise from the RI site of pKM101. We have termed the gene(s) promoting the alleviation of K restriction of phage ard (alleviation of restriction of DNA). It was shown (1) that ard function affected only the EcoK restriction system and not the EcoB, EcoRI, EcoRIII, or EcoPI system, (2) ard gene(s) did not mediate EcoK type modification of DNA and did not increase the modification activity of the EcoK system in a way similar to that observed with gene ral of bacteriophage .  相似文献   

2.
Summary The EcoK restriction of unmodified phage is 1000-fold alleviated in Escherichia coli grown in the presence of base analogs 2-aminopurine (2AP) and 5-bromouracil (5BU). 2AP treatment of bacteria affects specificially the type I restriction systems (EcoA, EcoB, EcoD and EcoK) and does not influence type II (EcoRI) and type III (EcoP1) restriction. 2AP-induced alleviation of restriction occurs in bacteria which are deficient in the SOS response (recA and lexA) and mismatch repair (mutH, mutL and mutS) and can be distinguished from the alleviation of restriction observed in dam - strains. We suggest that mismatches induced by 2AP and 5BU may function as an inducing signal for the alleviation of restriction observed in the presence of base analogs.  相似文献   

3.
Summary The host-controlled EcoK-restriction of unmodified phage .O is alleviated in dam mutants of Escherichia coli by 100- to 300-fold. In addition, the EcoK modification activity is substantially decreased in dam - strains. We show that type I restriction (EcoB, EcoD and EcoK) is detectably alleviated in dam mutants. However, no relief of EcoRI restriction (Type II) occurs in dam - strains and only a slight effect of dam mutation on EcoP1 restriction (Type III) is observed. We interpret the alleviation of the type I restriction in dam - strains to be a consequence of induction of the function which interferes with type I restriction systems.  相似文献   

4.
Summary The mucAB operon carried on plasmid pKM101, which is an analogue of the umuDC operon of Escherichia coli, is involved in UV mutagenesis and mutagenesis induced by many chemicals. Mutagenesis dependent on either the umuDC or mucAB operon requires the function of the recA gene and is called SOS mutagenesis. By treating the cell with agents that damage DNA, RecA protein is activated by conversion into a form (RecA*) that mediates proteolytic cleavage of the LexA repressor and derepresses the SOS genes including mucAB. Since UmuD protein is proteolytically processed to an active form (UmuD*) in a RecA*-dependent fashion, and MucA shares extensive amino acid homology with UmuD, we examined whether MucA is similarly processed in the cell, using antiserum against a LacZ-MucA fusion protein. Like UmuD, MucA protein is indeed proteolytically processed in a RecA*-dependent fashion. In recA430 strains, MucAB but not UmuDC can mediate UV mutagenesis. However, MucA was not processed in the recA430 cells treated with mitomycin C. We constructed, by site-directed mutagenesis, several mutant mucA genes that encode MucA proteins with alterations in the amino acids flanking the putative cleavage site (Ala25-Gly26). MucA(Cys25) was processed and was as mutagenically active as wild-type MucA; MucA(Asp26) and MucA(Cys25,Asp26) were not processed, and were mutagenically inactive; MucA-(Thr25) was not processed, but was mutagenically as active as wild-type MucA. The mutant mucA gene that encoded the putative cleavage product of MucA was as active as mucA + in UV mutagenesis. These results raise the possibility that both the nascent MucA and the processed product are active in mutagenesis.  相似文献   

5.
Summary In UV-irradiated cells of Escherichia coli K-12 a partial release of the restriction of non-modified phage is observed when the cells are recA + lexA +. We show here that the induction of this restriction allevation (RA) also depends on the recBC enzyme and that the expression of RA requires protein synthesis. Maximum expression was reached within 60 to 90 min after irradiation. Experiments are presented which show that upon UV-irradiation a signal is created which triggers the development of RA when protein synthesis is allowed. This signal decayed with a half-life of only a few minutes in cells treated with chloramphenicol. The decay kinetics were similar in uvr + and uvrA mutants. RA appeared to be specific for EcoK insofar as no allevation of restriction by EcoRI, EcoRII and EcoP1 occurred. During maximum expression of RA no gross reduction of the activities of the recBC enzyme (exonuclease V) and the restriction endonuclease EcoK was observed and no new DNA modifying activity appeared in the cells. Since, in fully expressed cells, up to 75% of the infecting DNA was converted to acid-soluble material within 20 min after infection we suggest that only a small specific fraction of infections may undergo RA.  相似文献   

6.
Summary Preincubation at 42o, before infection at permissive temperature by phage , of an Escherichia coli dnaB mutant, provokes a significant increase in survival and mutagenesis of ultraviolet irradiated phage as well as mutagenesis of untreated phage. Similarly to UV irradiation and many chemical mutagens, the inhibition of DNA synthesis by temperature shift of this dnaB mutant induces SOS repair. This work shows that replication blockage in bacterial DNA is not only mutagenic for bacterial DNA itself (Witkin, 1975) but also for normally replicating DNA, probably due to induction of diffusible products.  相似文献   

7.
Summary Bacteria with A-specific restriction plate unmodified phage with an efficiency of 10-2. One mutational event can produce restriction insensitive (sAo) mutants of . These differ from the original sA form of by no other property than their response to A-host specificity. Two-parental phage crosses involving sA and sAo, respectively, as non-selective marker allowed to map sA between genes cII and O. These data indicate that sA is the only site on DNA with affinity for A-specific restriction. DNA is thus an interesting substrate in in vitro A-specific restriction and modification. Using an assay based on the infectivity of DNA on helper-infected bacteria, A-specific modification activity was found in partially purified sonicates of bacteria with A-host specificity. In parallel to modification, 3H-methyl label from s-adenosylmethionine, the only cofactor required for modification, was transferred to unmodified DNA. No association of radioactivity was observed in control experiments with DNA from either modified ·A or from asAo mutant. These data suggest that A-specific modification is brought about by DNA methylation and that the sAo mutation not only abolished the affinity for A-specific restriction, but also for A-specific modification.  相似文献   

8.
    
Summary Host controlled restriction in Escherichia coli can be relieved by pre-infecting restricting cells with modified helper phages. This process, in which intact unmodified phage genomes are allowed to escape restriction attack, is mediated by a newly identified function called ral. The ral gene has been located by deletion mapping between cIII and N. Efficient expression of the ral gene requires the product of the regulator gene N. Polyacrylamide gel analysis of the proteins specified by the cIII-N region failed to reveal the product of the ral gene, but demonstrated that protein Ea10 is encoded by a gene located immediately to the left of ral. From these results the map order cIII-Ea10-ral-T L1-N was deduded. Ral specifically alleviates restriction in E. coli K and E. coli B, but does not affect restriction systems EcoRI, EcoRII and EcoP1. In addition, ral enhances the modification activity of the EcoK and EcoB restriction enzymes: we observed that efficient modification of progeny phages obtained by propagating unmodified phages in r- m+ hosts, is dependent upon the presence of ral. We thus conclude that the ral gene product acts by modulating the restriction and modification activities of the type I restriction systems in E. coli, and the possible mechanisms will be discussed.  相似文献   

9.
Summary The position of the metJBLF gene cluster in the transducing phage dmet102 was determined by ligation of its leftmost EcoRI fragment (102-1) to the BCDEF (nin5) EcoRI fragment of gtl (BC) and characterization of the resultant recombinant phage. The new transducing phage carries about 6kb of bacterial DNA which contains the entire met gene cluster including the promoter of its rightmost member metF. Reasonable estimates of the coding capacity required for the four genes indicate that most of the bacterial DNA of the recombinant phage is occupied by the met gene cluster.  相似文献   

10.
Summary The bacterial recA gene participates in the induction by UV irradiation of the clear mutation of phage and the Lac- mutation of bacteria. The necessary function is induced by irradiation of Rec+ bacteria and acts upon DNA irradiated with UV light.  相似文献   

11.
Summary In this paper are studied in E. coli K12 the influence of the bacterial Rec and phage Red recombination systems on the rescue of the O + gene from the prophage by a superinfecting O - phage, UV irradiated or not. In the absence of UV irradiation the Red system produces more recombinants that does the Rec system, and its action requires DNA replication. The presence of UV lesions in the DNA facilitates the action of the Rec system, which is more efficient in this instance than the Red system and can act in the absence of DNA replication. In all cases, there is a cooperation between the two generalized recombination systems.  相似文献   

12.
To study the mechanism of spontaneous and UV-induced illegitimate recombination, we examined the formation of thebio specialized transducing phage inEscherichia coli. Because mostbio transducing phages have double defects in thered andgam genes and have the capacity to form a plaque on anE. coli P2 lysogen (Spi phenotype), we selectedbio transducing phage by their Spi phenotype, rather than using thebio marker. We determined sequences of recombination junctions ofbio transducing phages isolated with or without UV irradiation and deduced sequences of parental recombination sites. The recombination sites were widely distributed onE. coli bio and DNAs, except for a hotspot which accounts for 57% of UV-inducedbio transducing phages and 77% of spontaneously inducedbio transducing phages. The hotspot sites onE. coli and DNAs shared a short homology of 9 bp. In addition, we detected direct repeat sequences of 8 by within and near both thebio and hotspots. ArecA mutation did not affect the frequency of the recombination at the hotspot, indicating that this recombination is not a variant ofrecA-dependent homologous recombination. We discuss a model in which the short homology as well as the direct repeats play essential roles in illegitimate recombination at the hotspot.  相似文献   

13.
Summary Expression of the lacZ gene in Escherichia coli is inactivated by exposure to ultraviolet light (UV). Inactivation is exceptionally effective when cells contain amplified levels of DNA photolyase (which forms complexes with pyrimidine dimers in the absence of light for actual photoreversal) and a prophage. Without amplified photolyase, the prophage or both, inactivation rates are similar and much lower. UV-inactivation of lacZ gene expression in the presence of both amplified photolyase and is even more effective if cI857 is used in place of the wildtype prophage but is wholly unexceptional if the prophage carries defects in the genes rexA or rexB. When Rex AB proteins are provided by expression from a plasmid and the cell also contains amplified photolyase, exceptional inactivation rates again obtain; in fact inactivation is most effective under these conditions. The data are considered to reveal a role for Rex AB proteins, which mediate superinfection exclusion, in the exceptional inactivation of gene expression by photolyase bound to pyrimidine dimers in DNA. Photolyase-dimer complexes may mimic the structure of certain complexes that arise during phage development and thus influence Rex A and/or B proteins, thereby shutting down cell metabolism.  相似文献   

14.
Summary In Escherichia coli, induction of the SOS functions by UV irradiation or by mutation in the recA gene promotes an SOS mutator activity which generates mutations in undamaged DNA. Activation of RecA protein by the recA730 mutation increases the level of spontaneous mutation in the bacterial DNA. The number of recA730-induced mutations is greatly increased in mismatch repair deficient strains in which replication errors are not corrected. This suggests that the majority of recA730-induced mutations (90%) arise through correctable, i.e. non-targeted, replication errors. This recA730 mutator effect is suppressed by a mutation in the umuC gene. We also found that dam recA730 double mutants are unstable, segregating clones that have lost the dam or the recA mutations or that have acquired a new mutation, probably in one of the genes involved in mismatch repair. We suggest that the genetic instability of the dam recA730 mutants is provoked by the high level of replication errors induced by the recA730 mutation, generating killing by coincident mismatch repair on the two unmethylated DNA strands. The recA730 mutation increases spontaneous mutagenesis of phage poorly. UV irradiation of recA730 host bacteria increases phage untargeted mutagenesis to the level observed in UV-irradiated recA + strains. This UV-induced mutator effect in recA730 mutants is not suppressed by a umuC mutation. Therefore UV and the recA730 mutation seem to induce different SOS mutator activities, both generating untargeted mutations.  相似文献   

15.
Summary A derivative of plasmid F which is packageable in phage coat was constructed using techniques of in vitro recombination. This plasmid is composed of three DNA fragments generated by restriction enzyme EcoRI: a miniF fragment (fragment f5 of F'lac) which is able to replicate autonomously, a DNA fragment from Staphylococcus Plasmid that carries the -lactamase gene, and a portion of guaA (B) transducing phage DNA carrying cohesive ends (cos site) along with almost all the late genes but devoid of all those genes and sites that are needed for replication, regulation, and recombination. The hybrid plasmid has a molecular weight of 2.7×107 daltons, about 84% size of phage genome, and can be packaged in coat when helper phage replicates in the plasmid-carrier cell. The package plasmid and the helper phage particles are separated by CsCl density gradient centrifugation. The replication characteristics of the recombinant plasmid are all those of F including the copy number, incompatibility, and curing with acidine orange. The packaged plasmid is injected into an F- cell and establishes a plasmid state with normal efficiency. In F+ or Hfr cells, the resident F factor hinders this process.  相似文献   

16.
Summary In order to study the organization of the ribosomal RNA genes of Mycoplasma hyopneumoniae the rRNA genes were cloned in phage vectors EMBL3 and EMBL4. By subcloning the restriction fragments into various plasmids and analysing the resulting clones by Southern and Northern blot hybridization, a restriction map of the rRNA genes was generated and the organization of the rRNA genes was determined. The results show that the genes for the 16S and 23S rRNAs are closely spaced and occur only once in the genome, whereas the 5S rRNA gene is separated from the other two genes by more than 4 kb.  相似文献   

17.
Summary A cloned gene with an insertion, which was made by introducing cat, was ligated to the cloning site of the phage gt11. P1 phage grown on cells lysogenized with the recombinant phage could transduce the mutant gene into the original site on the Escherichia coli chromosome.  相似文献   

18.
Electron microscopy of negatively stained isolated restriction enzyme EcoRI revealed particle projections with triangular or square outlines, indicating that the enzyme, in its tetrameric state, is tetrahedron-like. The two dimers making up the tetramer appear to be arranged in two planes orthogonal to each other. Complexes formed by EcoRI with the plasmids pBR322 or pGW10 were investigated by electron microscopic spreading techniques. In the presence of Mg2+, EcoRI was bound to the DNA molecules to form pearl necklace-like aggregates. The number of bound EcoRI particles was much higher as the sum of EcoRI-and 5..AATT..3 sites (with exceptions, the 5..AATT..3 sites may function as one type of EcoRI* sites) along the DNAs, indicating unspecific binding. In the absence of Mg2+, EcoRI was bound to the DNA only at the recognition site for EcoRI and the sites where the tetranucleotide sequence 5..AATT..3 was present. A direct correlation of the local concentrations of the bases A and T within the flanking sequences of the binding sites with the frequency of EcoRI to the DNA was observed. Dimers and tetramers of the enzyme was found to bind to the DNA. Tetramers occasionally exhibited two binding sites for DNA as indicated by the observation of DNA loops originating at the sites of bound tetrameric EcoRI particles.Abbreviations BAC Benzyldimethylalkylammoniumchloride - bp base pairs - Kb kilobases - SDS sodium dodecylsulfate Enzymes (EC 3.1.23.13) Restrictionendonuclease EcoRI - (EC 3.1.23.21) Restrictionendonuclease HindIII - (EC 3.1.23.37) Restrictionendonuclease SalGI Dedicated Professor H. G. Schlegel on occasion of this 60th birthday  相似文献   

19.
Summary It has been shown that linear DNA molecules of phage are converted to the twisted circular structure (species I) by covalent closure of the both strands at the cohesive ends after infection to the immune bacteria and that the twisted circular molecules are transformed to the circular form (species II) by a single-strand break in one of the strands of their DNA. This system offers a very sensitive method to study on the strand breaks or their repair. For characterization of the defects of ultraviolet sensitive strains, the structural changes of ultraviolet irradiated DNA in these strains were studied.Ultraviolet irradiation to phage greatly reduced the extent of conversion of the molecules to the species I in the uvrD mutant while the irradiation showed little effect on the conversion in the uvrA, B and C mutants. When infected bacteria carrying species I molecules were irradiated, the species I molecules in the uvrD mutant were disrupted while most of the molecules in the uvrA, B and C mutants kept the structure. These results indicate that in the irradiated DNA strand breaks are rarely introduced or, if introduced, repaired rapidly in the uvrA, B and C mutants and they are introduced in the uvrD mutant leading to the degradation of the DNA. These results provide a firm evidence that the defect of the uvrD mutant is different from other Her- mutants and in the process of repair synthesis.Ultraviolet irradiation to the uvrD mutants promote the formation of the species I molecules from the infected irradiated -DNA.Such effect was not observed with the uvrA mutant. Since the uvrD mutant has UV reactivation capacity and the uvrA mutant has not, the above phenomenon is probably caused by UV reactivation and may provide a more direct method to study the mechanisms of UV reactivation than the plaque assay.Abbreviations used UV Ultraviolet light - UVr Ultraviolet light reactivation This work was aided in part by a research grant GM 08384 from the United States Public Health Service.  相似文献   

20.
Summary A UGA suppressor derived from a glutamine tRNA gene of Escherichia coli K 12 was isolated and characterized. Phages carrying the suppressor su+2UGA could be obtained only from a hybrid transducing phage, h 80 cI 857psu +2oc, but not from the original transducing phage cI 857psu +2oc. By DNA sequence analysis, it was found that the su +2 UGA suppressor obtained has two mutations; one is in the anticodon (TTATCA), as expected, and the other (CT) is at the 7th position from the 3 end of tRNA 2 Gln . The significance of these mutations and the lethal effect on phage of the increased amounts of UGA suppressor tRNAs are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号