首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of beta-adrenergic receptors on astrocytes in primary cell culture results in the release of taurine, an inhibitory transmitter. Taurine release occurs via a cyclic AMP-mediated intracellular pathway, because (a) taurine release and intracellular cyclic AMP accumulation have similar pharmacologies and time courses of activation and (b) N6,O2'-dibutyryl cyclic AMP stimulates release with a time course similar to that observed with the beta-adrenergic agonist isoproterenol. These results describe a previously unrecognized physiological function of astrocytes in the CNS-receptor-mediated release of the neuroactive amino acid taurine. This observation indicates that astrocytes may function as local regulators of neuronal activity.  相似文献   

2.
Hormonally stimulated secretion of ACTH from AtT-20 mouse pituitary tumor cells is a cyclic AMP-mediated process. The presence of inhibitory cholinergic muscarinic receptors on these cells was recently reported, and in this study, the relationship between the activation of these receptors and the consequent inhibition of cyclic AMP formation and ACTH secretion was investigated. The muscarinic agent, oxotremorine, antagonized both cyclic AMP synthesis and ACTH secretion in response to corticotropin-releasing factor (CRF), vasoactive intestinal peptide, a 27-amino acid peptide with an N-terminal histidine and a C-terminal isoleucine amide, and forskolin. Other muscarinic agents, carbachol and bethanechol, had similar inhibitory effects. The cholinomimetics reduced basal (unstimulated) ACTH secretion without decreasing basal cyclic AMP levels, and also antagonized hormone release in response to cyclic AMP-independent agonists such as K+, A-23187, and phorbol ester. Scopolamine reversed the inhibitory effects of the muscarinic agents on basal and stimulated ACTH secretion and cyclic AMP formation. Increasing the extracellular calcium concentration reversed the muscarinic antagonism of basal and CRF-stimulated hormone release without affecting the cyclic AMP response. Pertussis toxin pretreatment attenuated the inhibitory effects of the muscarinic agents on forskolin-stimulated cyclic AMP synthesis and ACTH secretion as well as the inhibitory effect of carbachol on basal ACTH release. The data suggest that cyclic AMP is an essential mediator in the ACTH secretory pathway, but that an alternate cyclic AMP-independent ACTH pathway also exists in the clonal cells, and that both pathways may be modulated by a common postcholinergic receptor mechanism.  相似文献   

3.
Calcium channels in the heart play a major role in cardiac function. These channels are modulated in a variety of ways, including protein phosphorylation. Cyclic AMP-mediated phosphorylation is the best understood phosphorylation mechanism which regulates calcium influx into cardiac cells. Binding of an agonist (e.g., a catecholamine) to the appropriate receptor stimulates production of cyclic AMP by adenylate cyclase. The cyclic AMP may subsequently bind to and activate a cyclic AMP-dependent protein kinase, which then can phosphorylate a number of substrates, including the calcium channel (or a closely-associated regulatory protein). This results in stimulation of the calcium channels, greater calcium influx, and increased contractility. The cyclic AMP system is not the only protein kinase system in the heart. Thus, the possibility exists that other protein kinases may also regulate the calcium channels and, hence, cardiac function. Recent evidence suggests that cyclic GMP-mediated phosphorylation may play a role opposite to cyclic AMP-mediated phosphorylation, i.e., inhibition of the calcium current rather than stimulation. Other recent evidence also suggests that a calcium/calmodulin-dependent protein kinase and calcium/phospholipid-dependent protein kinase (protein kinase C) may also regulate the myocardial calcium channels. Thus, protein phosphorylation may be a general mechanism whereby calcium channels and cardiac function are modulated under a variety of conditions.  相似文献   

4.
C Q Earl  J Linden  W B Weglicki 《Life sciences》1986,39(20):1901-1908
Amrinone and milrinone are new cardiotonic drugs that have potent inotropic and vasodilatory properties. The mechanism of action of these agents is controversial, but the positive inotropic component is thought to be due to the inhibition of phosphodiesterase. Because amrinone and milrinone have been shown to be involved primarily in cyclic AMP-mediated processes, we examined the effect of these agents on cyclic AMP-dependent protein kinase. The results indicate that amrinone and milrinone inhibit cyclic AMP-dependent protein kinase activity by competing with ATP but not cyclic AMP binding sites. Dissociation constants (Ki) of amrinone and milrinone for ATP binding sites on protein kinase were calculated to be 100-300 microM and 842 microM, respectively. The phosphodiesterase inhibitor isobutylmethylxanthine (1 mM) had no effect on protein kinase activity. Amrinone and milrinone inhibited the catalytic subunit of protein kinase to the same degree as the holo-enzyme by competitively inhibiting the binding of ATP. Amrinone and milrinone had no effect on phospholipid-sensitive, calcium-dependent protein kinase indicating that there may be differences in the ATP binding sites on these two protein kinases. Inhibition of cyclic AMP-dependent protein kinase by amrinone and milrinone occurs at concentrations higher than those used clinically. However, because amrinone and milrinone are lipophilic drugs, they may be useful tools for the investigation of protein kinase mediated reactions.  相似文献   

5.
Because several groups have recently questioned a mediating role for cyclic AMP in adrenocortical steroidogenesis, we analysed the problem in more detail by measuring three different cyclic AMP pools in cells isolated from decapsulated rat adrenals. Extra-cellular, total intracellular and bound intracellular cyclic AMP were determined by radioimmunoassay in comparison with corticosterone production induced by low corticotropin concentrations. The increase in extracellular and total intracellular cyclic AMP with low corticotropin concentrations was dependent on the presence of a phosphodiesterase inhibitor and short incubation times. Bound intracellular cyclic AMP was less dependent on these two parameters. In unstimulated cells cyclic AMP bound to its receptor represents only a small fraction of the total intracellular cyclic AMP. After stimulation by a concentration of corticotropin around the threshold for corticosterone production, an increase in bound cyclic AMP was observed which correlated very well with steroidogenesis both temporally and with respect to corticotropin concentration. This finding was complemented by measuring a concomitant decrease in free receptor sites. Full occupancy of the receptors was not necessary for maximal steroidogenesis. Binding kinetics of cyclic [(3)H]AMP in concentrations equivalent to the intracellular cyclic AMP concentration suggest the presence of at least three different intracellular cyclic AMP pools. These observations are in agreement with a possible role for cyclic AMP as a mediator of acute steroidogenesis induced by low corticotropin concentrations.  相似文献   

6.
Chinese hamster ovary cells exhibit several characteristic morphological and physiological responses upon treatment with agents which increase the intracellular level of adenosine 3':5'-phosphate (cyclic AMP). To better understand the mechanism of these cyclic AMP-mediated responses, we separated two cyclic AMP-dependent protein kinases (ATP:protein phosphotransferase, EC 2.7.1.37) (protein kinase I and protein kinase II) from the cytosol of Chinese hamster ovary cells by DEAE-cellulose chromatography and studied their properties. Protein kinase I is eluted at a lower salt concentration than protein kinase II and is stimulable to 10 times its basal catalytic activity, while protein kinase II is stimulable only 2-fold. Both kinases are completely dissociated by cyclic AMP and inhibited by specific cyclic AMP-dependent protein kinase inhibitor. They have similar Km values for magnesium (approximately 1 mM), cyclic AMP (approximately 60 nM), and ATP (approximately 0.1 mM), and the dissociation constant (Kdis) for cyclic AMP (approximately 13 nM) is the same for both enzymes. However, they appear to have different substrate preferences and cyclic AMP-binding properties in that cyclic AMP bound to protein kinase II exchanges readily with free cyclic AMP, while that bound to protein kinase I is not exchangeable. The native enzymes have different sedimentation coefficients (6.4 S for protein kinase I and 4.8 S for protein kinase II), whereas those of the activated enzymes are the same (2.9--3.0 S). It appears that the two cyclic AMP-dependent protein kinases which differ from each other in their regulatory subunits may play different roles in the mediation of cyclic AMP action in Chinese hamster ovary cells.  相似文献   

7.
Prostaglandin E1 (PGE1), a component in the hormone-supplemented, serum-free medium for the Madin Darby canine kidney (MDCK) cell line, has been proposed to increase MDCK cell growth by increasing intracellular cyclic AMP levels. The association between increased intracellular cyclic AMP and the growth stimulatory effect of PGE1 has been examined in normal MDCK cells and in PGE1-independent variants of MDCK. These variant cells have lost the PGE1 requirement for long term growth in defined medium. Normal MDCK cells had almost twofold higher intracellular cyclic AMP levels during growth in Medium K-1 (9.0 pmol/mg protein) than in Medium K-1 minus PGE1. Furthermore, PGE1-independent clone 1 had higher intracellular cyclic AMP levels in Medium K-1 minus PGE1 than normal MDCK cells in Medium K-1. This latter observation suggests that the PGE1 requirement for MDCK cell growth is associated with the low intracellular cyclic AMP levels of this cell line. An involvement of cyclic AMP in the growth response to PGE1 is supported by these observations, as well as by the growth stimulatory effects of other agents that affect cyclic AMP metabolism in MDCK cells. These agents include glucagon, isobutyl methylxanthine (IBMX), and dibutyryl cyclic AMP. The growth of PGE1-independent clone 1 was inhibited rather than stimulated by PGE1. Similarly, PGE1-independent cell growth was inhibited by IBMX and dibutyryl cyclic AMP. However, the growth response to one agent which increases cyclic AMP (glucagon) was retained in PGE1-independent clone 1. This result suggests that the effect of glucagon is not associated with increases in intracellular cyclic AMP. The growth stimulatory effect of epidermal growth factor (EGF) on normal MDCK cells was also studied. Although EGF does not act via a cyclic AMP-mediated mechanism, EGF increased normal MDCK cell growth and substituted for PGE1 in Medium K-1. Thus, EGF and PGE1 could possibly affect similar growth-related functions in MDCK cells, although by different pathways. This possibility was examined further, using PGE1-independent clone 1. EGF, like glucagon, was still growth stimulatory to the PGE1-independent cells. Consequently, the biochemical pathways by which EGF and PGE1 increase MDCK cell growth probably do not converge.  相似文献   

8.
9.
Photomicrography and reflectance microphotometry were used to monitor melanosome movement in frog skin melanocytes in vitro in response to hormonal stimulation and cytochalasin B (CB). Melanocyte-stimulating hormone (MSH), theophylline, and dibutyryl cyclic AMP (DiBcAMP) induced melanosome dispersion (darkening) which was promptly arrested by cytochalasin B in concentrations of 5–20 µg/ml. Melanosome aggregation (skin lightening) occurred only after removal of the darkening agent (MSH, theophylline, or DiBcAMP) and proceeded in the presence or absence of CB. When CB was added to darkened skins, they did not lighten and melanosomes remained in the dispersed state. Use of CB has permitted the dissection of cyclic AMP-mediated melanosome dispersion into two distinct events. The first, induction of melanosome dispersion, is CB sensitive. The second action of intracellular cyclic AMP involves an uncoupling of the centripetal motive force, and is CB insensitive. In the latter process, production of cyclic AMP appears to produce the same result as application of microtubule-disrupting agents.  相似文献   

10.
Intracellular recordings from cultured parietal cells of the rat gastric fundus showed that carbachol, pentagastrin, histamine (in the presence of isobutylmethylxanthine; IBMX) and dibutyryl cyclic AMP induced hyperpolarizing responses which were sensitive to a K+ channel blocker, quinine. The Ca2+ ionophore, ionomycin, also induced a quinine-sensitive hyperpolarization. Deprivation of extracellular Ca2+ preferentially inhibited the hyperpolarizing responses to histamine (plus IBMX) and to dibutyryl cyclic AMP. Caffeine, oxalate and dantrolene sodium, which are known to affect Ca2+ transport in the endoplasmic reticulum, selectively inhibited the carbachol response. Mitochondrial inhibitors (KCN and carbonylcyanide p-trifluoromethoxyphenylhydrazone) preferentially suppressed the gastrin response. Cytosolic Ca2+ measurements with fura-2 indicated that significant increases in the intracellular concentration of free Ca2+ were induced not only by Ca2+-mediated acid secretagogues (carbachol and gastrin), but also by a cyclic AMP-mediated secretagogue (histamine plus IBMX). Dibutyryl cyclic AMP also increased cytosolic Ca2+ ions. It is concluded that stimulation of receptors to histamine, carbachol and gastrin gives rise to mobilization of Ca2+ ions into the cytoplasm from the different sources, thereby stimulating Ca2+-activated K+ channels in cultured rat parietal cells.  相似文献   

11.
Stimulation of cardiac muscarinic receptors leads to increases in the synthesis and hydrolysis of the membrane phospholipid phosphatidylinositol (PI). Carbachol stimulates PI hydrolysis in right and left murine atria as well as in murine ventricule and dissociated embryonic chick heart cells. Muscarinic stimulation of PI hydrolysis is markedly attenuated in calcium-free medium, is not antagonized by isoproterenol, occurs after a latency of several minutes, and is half-maximally activated by approximately 10 microM carbachol. In contrast, muscarinic inhibition of cyclic AMP accumulation in the same preparations is calcium independent, is opposed by the effect of isoproterenol, is maximal in minutes, and is half-maximally activated by 0.1 microM carbachol. These differences demonstrate that the two muscarinic receptor-mediated events are probably unrelated and independent responses. The concentration of carbachol that causes half-maximal activation of PI hydrolysis is almost identical to that causing half muscarinic receptor occupancy as assessed by 3H-labeled (-)-quinuclidinyl benzilate binding. Thus activation of the PI response by carbachol appears to be closely linked to receptor occupancy, whereas cyclase inhibition may occur when only a small percentage of receptors are occupied. The possible role of the PI response in generating intracellular signals such as arachidonic acid release, cyclic GMP synthesis, or C-kinase activation is discussed.  相似文献   

12.
Stable variants of the macrophage-like cell line J774.2, defective in adenylate cyclase and protein kinase activities, were selected by cloning cells resistant to the growth-inhibitory effect of cholera toxin and 8-bromo-adenosine 3':5' cyclic monophosphoric acid (8 Br-cAMP), respectively. These variants were analyzed for their ability to respond to cyclic AMP-mediated enhancement of phagocytosis and cyclic AMP-mediated inhibition of plasminogen activator secretion and growtn. The adenylate cyclase variants were unaffected by cholera toxin but were sensitive to 8 Br-cAMP-mediated inhibition of plasminogen activator secretion and growth. One of these variants exhibited a defect in phagocytosis that could be corrected by 8 Br-cAMP. The protein kinase variants exhibited normal basal phagocytosis that could not be stimulated by either 8 Br-cAMP or cholera toxin; they were also insensitive to cyclic AMP-mediated inhibition of plasminogen activator secretion and growth. The studies demonstrate that the three effects of cyclic AMP in J774.2--inhibition of growth and plasminogen activator secretion, and enhancement of basal Fc-mediated phagocytosis--are mediated by a cyclic AMP-dependent portein kinase. The results support the usefulness of variants in cyclic nucleotide metabolism in understanding the regulation of differentiated cell function by cyclic AMP.  相似文献   

13.
The effects of redox reagents on the activity of the intracellular calcium release channels (ryanodine receptors) of skeletal and cardiac muscle, or brain cortex neurons, was examined. In lipid bilayer experiments, oxidizing agents (2,2'-dithiodipyridine or thimerosal) modified the calcium dependence of all single channels studied. After controlled oxidation channels became active at sub microM calcium concentrations and were not inhibited by increasing the calcium concentration to 0.5 mM. Subsequent reduction reversed these effects. Channels purified from amphibian skeletal muscle exhibited the same behavior, indicating that the SH groups responsible for modifying the calcium dependence belong to the channel protein. Parallel experiments that measured calcium release through these channels in sarcoplasmic reticulum vesicles showed that following oxidation, the channels were no longer inhibited by sub mM concentrations of Mg2+. It is proposed that channel redox state controls the high affinity sites responsible for calcium activation as well as the low affinity sites involved in Mg2+ inhibition of channel activity. The possible physiological and pathological implications of these results are discussed.  相似文献   

14.
15.
Evidence from several rodent models has suggested that a reduction of either atrial natriuretic peptide or its receptor in the heart affects cardiac remodeling by promoting the onset of cardiac hypertrophy. The atrial natriuretic peptide receptor mediates signaling at least in part via the generation of intracellular cyclic GMP. To directly test whether accumulation of intracellular cyclic GMP conveys protection against cardiac hypertrophy, we engineered transgenic mice that overexpress a catalytic fragment of constitutively active guanylate cyclase domain of the atrial natriuretic peptide receptor in a cardiomyocyte-specific manner. Expression of the transgene increased the intracellular concentration of cyclic GMP specifically within cardiomyocytes and had no detectable effect on cardiac performance under basal conditions. However, expression of the transgene attenuated the effects of the pharmacologic hypertrophic agent isoproterenol on cardiac wall thickness and prevented the onset of the fetal gene expression program normally associated with cardiac hypertrophy. Likewise, expression of the transgene inhibited the hypertrophic effects of abdominal aortic constriction, since it abolished its effects on ventricular wall thickness and greatly attenuated its effects on cardiomyocyte size. Altogether, our results suggest that cyclic GMP is a cardioprotective agent against hypertrophy that acts via a direct local effect on cardiomyocytes.  相似文献   

16.
Specific binding sites for vasoactive intestinal peptide (VIP), a potent vasodilatory polypeptide, and its effect on formation of intracellular cyclic AMP levels were studied in cultured vascular smooth muscle cells (VSMC) from rat aorta. Specific binding of 125I-labeled-VIP to cultured VSMCs was time- and temperature-dependent. Scatchard analysis of binding studies suggested the presence of two classes of high and low affinity binding sites for VIP; the apparent Kd and the number of maximal binding capacity were ∼8×10−9 M and 60,000 sites/cell (high-affinity sites) and ∼4×10−8 M and 140,000 sites/cells (low-affinity sites), respectively. Unlabeled VIP competitively inhibited the binding of 125I-labeled-VIP to its binding sites, whereas neither peptides structurally related to VIP, nor other vasoactive substances affected the binding. VIP stimulated formation of intracellular cyclic AMP in cultured VSMCs in a dose-dependent manner; the stimulatory effect of VIP on cyclic AMP formation was not blocked by propranolol and was additive with isoproterenol. The present study first demonstrates the presence of specific receptors for VIP in VSMCs functionally coupled to adenylate cyclase system. It is suggested that VIP exerts its vasodilatory effect through its specific receptors distinct from β-adrenergic receptors.  相似文献   

17.
The effects of natural polyamines on cyclic AMP-mediated stimulation of amino acid transport in isolated rat hepatocytes were analyzed. Despite the fact that polyamines could directly compete with alpha-aminoisobutyric acid (AIB) for uptake, preincubation of hepatocytes with polyamines did not significantly alter basal AIB transport. The stimulatory effect of glucagon or cyclic AMP analogs was differently affected by polyamines, since it was reduced in the presence of spermine and, inversely, potentiated by spermidine, putrescine, and cadaverine. Dose-dependence analysis showed that half maximal and maximal effects occurred with 2-3 and 6-10 mM external concentrations, respectively. None of the polyamine effects could be ascribed to transstimulation or transinhibition of amino acid uptake. The inhibitory effect exerted by spermine correlated its capacity to inhibit [3H]-leucine incorporation into proteins partially. The potentiating effect of the other polyamines did not result from stabilization of newly synthesized carrier proteins. Instead, the increase in Vmax of the high affinity transport component suggested that more carriers became available, presumably because polyamines facilitated their synthesis by interacting directly with one or several steps controlled by cyclic AMP. Polyamines appear to represent a new class of factors capable of modulating the cyclic AMP-mediated stimulation of amino acid transport, in hepatocytes.  相似文献   

18.
Ryanodine receptors have recently been shown to be the Ca2+ release channels of sarcoplasmic reticulum in both cardiac muscle and skeletal muscle. Several regulatory sites are postulated to exist on these receptors, but to date, none have been definitively identified. In the work described here, we localize one of these sites by showing that the cardiac isoform of the ryanodine receptor is a preferred substrate for multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase). Phosphorylation by CaM kinase occurs at a single site encompassing serine 2809. Antibodies generated to this site react only with the cardiac isoform of the ryanodine receptor, and immunoprecipitate only cardiac [3H]ryanodine-binding sites. When cardiac junctional sarcoplasmic reticulum vesicles or partially purified ryanodine receptors are fused with planar bilayers, phosphorylation at this site activates the Ca2+ channel. In tissues expressing the cardiac isoform of the ryanodine receptor, such as heart and brain, phosphorylation of the Ca2+ release channel by CaM kinase may provide a unique mechanism for regulating intracellular Ca2+ release.  相似文献   

19.
Lysine vasopressin (antidiuretic hormone), like cyclic adenosine 3',5'-monophosphate (cyclic AMP), rapidly (in less than 1 hour) stimulates the initiation of deoxyribonucleic acid synthesis and thereby increases the flow of cells into mitosis in rat thymic lymphocyte populations in vitro. This mitogenic action of vasopressin, again like that of cyclic AMP, is potentiated by caffeine, an inhibitor of the intracellular phosphodiesterase which catalyzes the degradation of cyclic AMP. On the other hand, vasopressin's mitogenic action (also like that of cyclic AMP) is blocked by imidazole, an activator of cyclic nucleotide phosphodiesterase activity. The hormone, thyrocalcitonin (calcitonin) which is known to block the cyclic AMP-mediated mitogenic effect of parathyroid hormone by interfering with cyclic AMP action, also blocks the mitogenic action of vasopressin. The inhibitory effects of imidazole and thyrocalcitonin on vasopressin's mitogenic action are both overcome by the phosphodiesterase inhibitor, caffeine. It is concluded from these observations that the mitogenic action of vasopressin is mediated by cyclic AMP.  相似文献   

20.
Glutamine synthetase specific activity increases greater than 100-fold during the insulin-mediated differentiation of confluent 3T3-L1 cells into adipocytes. Incubation of the adipocytes for 22 h with 0.5 mM dibutyryl cyclic AMP plus 0.5 mM theophylline, 0.2 mM 8-bromo-cyclic AMP, 10 micro M epinephrine, or 1 microgram of alpha 1-24 adrenocorticotropic hormone/ml decreased glutamine synthetase by greater than 60%. During the same incubation period, there was no effect of these compounds on protein or on the specific activities of glucose-6-P dehydrogenase or hexokinase. In the presence of 0.5 mM theophylline, the dibutyryl cyclic AMP-mediated decrease in glutamine synthetase activity was half-maximal at 50 micro M dibutyryl cyclic AMP. Furthermore, between 10 micro M and 5 mM dibutyryl cyclic AMP, the dibutyryl cyclic AMP-mediated decrease in glutamine synthetase was similar in the absence or presence of 1 microgram of insulin/ml. Immunotitration of glutamine synthetase activity from 3T3 adipocytes indicates that the dibutyryl cyclic AMP-mediated decrease in the activity is due to a decrease in the cellular content of glutamine synthetase molecules. We studied the effects of dibutyryl cyclic AMP on the synthesis and degradation of glutamine synthetase. Synthesis rate was estimated from the incorporation of L-[35S]methionine into glutamine synthetase during a 60-min incubation period. Degradation rate was estimated from the first order disappearance of radioactivity from glutamine synthetase in 3T3 adipocytes previously incubated with L-[35S]methionine. Glutamine synthetase was isolated by immunoprecipitation followed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Incubation of 3T3 adipocytes with dibutyrl cyclic AMP resulted in a rapid decline in the apparent synthesis rate of glutamine synthetase. In addition, dibutyryl cyclic AMP treatment increased the initial rate of glutamine synthetase degradation. The half-life of glutamine synthetase was 24.5 h in control cultures and 16 h in dibutyryl cyclic AMP-treated cultures. In contrast, dibutyryl cyclic AMP had little effect on the synthesis or degradation of soluble protein. Our data indicate that the dibutyryl cyclic AMP-mediated decrease in 3T3 adipocyte glutamine synthetase activity results from a decrease in the synthesis rate and an increase in the initial degradation rate of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号