首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bacillus subtilis AddAB enzyme possesses ATP-dependent helicase and nuclease activities, which result in the unwinding and degradation of double-stranded DNA (dsDNA) upon translocation. Similar to its functional counterpart, the Escherichia coli RecBCD enzyme, it also recognizes and responds to a specific DNA sequence, referred to as Chi (chi). Recognition of chi triggers attenuation of the 3'- to 5'-nuclease, which permits the generation of recombinogenic 3'-overhanging, single-stranded DNA (ssDNA), terminating at chi. Although the RecBCD enzyme briefly pauses at chi, no specific binding of RecBCD to chi during translocation has been documented. Here, we show that the AddAB enzyme transiently binds to its cognate chi sequence (chi(Bs): 5'-AGCGG-3') during translocation. The binding of AddAB enzyme to the 3'-end of the chi(Bs)-specific ssDNA results in protection from degradation by exonuclease I. This protection is gradually reduced with time and lost upon phenol extraction, showing that the binding is non-covalent. Addition of AddAB enzyme to processed, chi(Bs)-specific ssDNA that had been stripped of all protein does not restore nuclease protection, indicating that AddAB enzyme binds to chi(Bs) with high affinity only during translocation. Finally, protection of chi(Bs)-specific ssDNA is still observed when translocation occurs in the presence of competitor chi(Bs)-carrying ssDNA, showing that binding occurs in cis. We suggest that this transient binding of AddAB to chi(Bs) is an integral part of the AddAB-chi(Bs) interaction and propose that this molecular event underlies a general mechanism for regulating the biochemical activities and biological functions of RecBCD-like enzymes.  相似文献   

2.
Homologous recombination in Bacillus subtilis requires the product of the addA and addB genes, the AddAB enzyme. This enzyme, which is both a helicase and a powerful nuclease, is thought to be the counterpart of the Escherichia coli RecBCD enzyme. From this analogy, it is expected that the nuclease activity of AddAB can be downregulated by a specific DNA sequence, which would correspond to the chi site in E. coli . Using protection of linear double-stranded DNA as a criterion, we identified the five-nucleotide sequence 5'-AGCGG-3', or its complement 5'-CCGCT-3', as being sufficient for AddAB nuclease attenuation. We have shown further that this attenuation occurs only if the sequence is properly oriented with respect to the translocating AddAB enzyme. Finally, inspection of the complete B. subtilis genome revealed that this five-nucleotide sequence is over-represented and is, in a majority of cases, co-oriented with DNA replication. Based on these observations, we propose that 5'-AGCGG-3', or its complement, is the B. subtilis analogue of the E. coli chi sequence.  相似文献   

3.
Homologous recombination and double-stranded DNA break repair in Escherichia coli are initiated by the multifunctional RecBCD enzyme. After binding to a double-stranded DNA end, the RecBCD enzyme unwinds and degrades the DNA processively. This processing is regulated by the recombination hot spot, Chi (chi: 5'-GCTGGTGG-3'), which induces a switch in the polarity of DNA degradation and activates RecBCD enzyme to coordinate the loading of the DNA strand exchange protein, RecA, onto the single-stranded DNA products of unwinding. Recently, a single mutation in RecB, Asp-1080 --> Ala, was shown to create an enzyme (RecB(D1080A)CD) that is a processive helicase but not a nuclease. Here we show that the RecB(D1080A)CD enzyme is also unable to coordinate the loading of the RecA protein, regardless of whether chi sites are present in the DNA. However, the RecB(D1080A)CD enzyme does respond to chi sites by inactivating in a chi-dependent manner. These data define a locus of the RecBCD enzyme that is essential not only for nuclease function but also for the coordination of RecA protein loading.  相似文献   

4.
RecBCD has two conflicting roles in Escherichia coli. (i) As ExoV, it is a potent double-stranded (ds)DNA exonuclease that destroys linear DNA produced by restriction of foreign DNA. (ii) As a recombinase, it promotes repair of dsDNA breaks and genetic recombination in the vicinity of chi recombination hot-spots. These paradoxical roles are accommodated by chi-dependent attenuation of RecBCD exonuclease activity and concomitant conversion of the enzyme to a recombinase. To challenge the proposal that chi converts RecBCD from a destructive exonuclease to a recombinogenic helicase, we mutated the nuclease catalytic centre of RecB and tested the resulting mutants for genetic recombination and DNA repair in vivo. We predicted that, if nuclease activity inhibits recombination and helicase activity is sufficient for recombination, the mutants would be constitutive recombinases, as has been seen in recD null mutants. Conversely, if nuclease activity is required, the mutants would be recombination deficient. Our results indicate that 5' --> 3' exonuclease activity is essential for recombination by RecBCD at chi recombination hot-spots and at dsDNA ends in recD mutants. In the absence of RecB-dependent nuclease function, recombination becomes entirely dependent on the 5' --> 3' single-stranded (ss)DNA exonuclease activity of RecJ and the helicase activity of RecBC(D).  相似文献   

5.
RecBCD enzyme is a heterotrimeric helicase/nuclease that initiates homologous recombination at double-stranded DNA breaks. Several of its activities are regulated by the DNA sequence chi (5'-GCTGGTGG-3'), which is recognized in cis by the translocating enzyme. When RecBCD enzyme encounters chi, the intensity and polarity of its nuclease activity are changed, and the enzyme gains the ability to load RecA protein onto the chi-containing, unwound single-stranded DNA. Here, we show that interaction with chi also affects translocation by RecBCD enzyme. By observing translocation of individual enzymes along single molecules of DNA, we could see RecBCD enzyme pause precisely at chi. Furthermore, and more unexpectedly, after pausing at chi, the enzyme continues translocating but at approximately one-half the initial rate. We propose that interaction with chi results in an enzyme in which one of the two motor subunits, likely the RecD motor, is uncoupled from the holoenzyme to produce the slower translocase.  相似文献   

6.
RecBCD enzyme is a heterotrimeric helicase/nuclease that initiates homologous recombination at double-stranded DNA breaks. The enzyme is driven by two motor subunits, RecB and RecD, translocating on opposite single-strands of the DNA duplex. Here we provide evidence that, although both motor subunits can support the translocation activity for the enzyme, the activity of the RecB subunit is necessary for proper function of the enzyme both in vivo and in vitro. We demonstrate that the RecBCD(K177Q) enzyme, in which RecD helicase is disabled by mutation of the ATPase active site, complements recBCD deletion in vivo and displays all of the enzymatic activities that are characteristic of the wild-type enzyme in vitro. These include helicase and nuclease activities and the abilities to recognize the recombination hotspot chi and to coordinate the loading of RecA protein onto the ssDNA it produces. In contrast, the RecB(K29Q)CD enzyme, carrying a mutation in the ATPase site of RecB helicase, fails to complement recBCD deletion in vivo. We further show that even though RecB(K29Q)CD enzyme displays helicase and nuclease activities, its inability to translocate along the 3'-terminated strand results in the failure to recognize chi and to load RecA protein. Our findings argue that translocation by the RecB motor is required to deliver RecC subunit to chi, whereas the RecD subunit has a dispensable motor activity but an indispensable regulatory function.  相似文献   

7.
The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called chi. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp(1067) and Lys(1082), abolished nuclease activity on both single- and double-stranded DNA. Together with Asp(1080), these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases. The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases. Furthermore, the mutant enzymes were unable to produce chi-specific fragments that are thought to result from the 3'-5' and 5'-3' single-stranded exonuclease activities of the enzyme during its reaction with chi-containing double-stranded DNA. The results show that the nuclease active site in the RecB C-terminal 30-kDa domain is the universal nuclease active site of RecBCD that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and RecBCD-DNA interaction is offered.  相似文献   

8.
To understand how bulky adducts might perturb DNA helicase function, three distinct DNA-binding agents were used to determine the effects of DNA alkylation on a DNA helicase. Adozelesin, ecteinascidin 743 (Et743) and hedamycin each possess unique structures and sequence selectivity. They bind to double-stranded DNA and alkylate one strand of the duplex in cis, adding adducts that alter the structure of DNA significantly. The results show that Et743 was the most potent inhibitor of DNA unwinding, followed by adozelesin and hedamycin. Et743 significantly inhibited unwinding, enhanced degradation of DNA, and completely eliminated the ability of the translocating RecBCD enzyme to recognize and respond to the recombination hotspot chi. Unwinding of adozelesin-modified DNA was accompanied by the appearance of unwinding intermediates, consistent with enzyme entrapment or stalling. Further, adozelesin also induced "apparent" chi fragment formation. The combination of enzyme sequestering and pseudo-chi modification of RecBCD, results in biphasic time-courses of DNA unwinding. Hedamycin also reduced RecBCD activity, albeit at increased concentrations of drug relative to either adozelesin or Et743. Remarkably, the hedamycin modification resulted in constitutive activation of the bottom-strand nuclease activity of the enzyme, while leaving the ability of the translocating enzyme to recognize and respond to chi largely intact. Finally, the results show that DNA alkylation does not significantly perturb the allosteric interaction that activates the enzyme for ATP hydrolysis, as the efficiency of ATP utilization for DNA unwinding is affected only marginally. These results taken together present a unique response of RecBCD enzyme to bulky DNA adducts. We correlate these effects with the recently determined crystal structure of the RecBCD holoenzyme bound to DNA.  相似文献   

9.
Amundsen SK  Smith GR 《Genetics》2007,175(1):41-54
The major pathway of genetic recombination and DNA break repair in Escherichia coli requires RecBCD enzyme, a complex nuclease and DNA helicase regulated by Chi sites (5'-GCTGGTGG-3'). During its unwinding of DNA containing Chi, purified RecBCD enzyme has two alternative nucleolytic reactions, depending on the reaction conditions: simple nicking of the Chi-containing strand at Chi or switching of nucleolytic degradation from the Chi-containing strand to its complement at Chi. We describe a set of recC mutants with a novel intracellular phenotype: retention of Chi hotspot activity in genetic crosses but loss of detectable nucleolytic degradation as judged by the growth of mutant T4 and lambda phages and by assay of cell-free extracts. We conclude that RecBCD enzyme's nucleolytic degradation of DNA is not necessary for intracellular Chi hotspot activity and that nicking of DNA by RecBCD enzyme at Chi is sufficient. We discuss the bearing of these results on current models of RecBCD pathway recombination.  相似文献   

10.
In Escherichia coli, homologous recombination initiated at double-stranded DNA breaks requires the RecBCD enzyme, a multifunctional heterotrimeric complex that possesses processive helicase and exonuclease activities. Upon encountering the DNA regulatory sequence, chi, the enzymatic properties of RecBCD enzyme are altered. Its helicase activity is reduced, the 3'-->5'nuclease activity is attenuated, the 5'-->3' nuclease activity is up-regulated, and it manifests an ability to load RecA protein onto single-stranded DNA. The net result of these changes is the production of a highly recombinogenic structure known as the presynaptic filament. Previously, we found that the recC1004 mutation alters chi-recognition so that this mutant enzyme recognizes an altered chi sequence, chi*, which comprises seven of the original nucleotides in chi, plus four novel nucleotides. Although some consequences of this mutant enzyme-mutant chi interaction could be detected in vivo and in vitro, stimulation of recombination in vivo could not. To resolve this seemingly contradictory observation, we examined the behavior of a RecA mutant, RecA(730), that displays enhanced biochemical activity in vitro and possesses suppressor function in vivo. We show that the recombination deficiency of the RecBC(1004)D-chi* interaction can be overcome by the enhanced ability of RecA(730) to assemble on single-stranded DNA in vitro and in vivo. These data are consistent with findings showing that the loading of RecA protein by RecBCD is necessary in vivo, and they show that RecA proteins with enhanced single-stranded DNA-binding capacity can partially bypass the need for RecBCD-mediated loading.  相似文献   

11.
Various mutations were introduced in a conserved helicase domain (motif VI) of the AddA subunit of the Bacillus subtilis ATP-dependent nuclease (AddAB) by site-directed mutagenesis. These mutations affected the helicase activity and the ATP-dependent exonuclease activity on double-stranded DNA (dsDNA) as the substrate to various degrees, but had hardly any effect on the exonuclease activity on single-stranded DNA (ssDNA), suggesting that exonuclease activity on dsDNA of the enzyme requires unwinding of the DNA. This idea was supported by the finding that, initially, the rate and extent of unwinding of the DNA were higher than those of its degradation to acid-soluble products by the exonucleolytic activity. The effects of the mutations on DNA repair and recombination correlated strongly with their effects on helicase activity. Taken together, these results suggest that motif VI is essential for the helicase activity, and that this activity is required for DNA repair and recombination.  相似文献   

12.
AddAB is a helicase-nuclease that processes double-stranded DNA breaks for repair by homologous recombination. This process is modulated by Chi recombination hotspots: specific DNA sequences that attenuate the nuclease activity of the translocating AddAB complex to promote downstream recombination. Using a combination of kinetic and imaging techniques, we show that AddAB translocation is not coupled to DNA unwinding in the absence of single-stranded DNA binding proteins because nascent single-stranded DNA immediately re-anneals behind the moving enzyme. However, recognition of recombination hotspot sequences during translocation activates unwinding by coupling these activities, thereby ensuring the downstream formation of single-stranded DNA that is required for RecA-mediated recombinational repair. In addition to their implications for the mechanism of double-stranded DNA break repair, these observations may affect our implementation and interpretation of helicase assays and our understanding of helicase mechanisms in general.  相似文献   

13.
The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a single helicase core domain is sufficient for DNA unwinding activity, biochemical data from several related enzymes suggest that a higher order oligomeric species is required. In this work we characterize the helicase activity of the AddAB helicase-nuclease, which is involved in the repair of double-stranded DNA breaks in Bacillus subtilis. We show that the enzyme is functional as a heterodimer of the AddA and AddB subunits, that it is a rapid and processive DNA helicase, and that it catalyses DNA unwinding using one single-stranded DNA motor of 3' → 5' polarity located in the AddA subunit. The AddB subunit contains a second putative ATP-binding pocket, but this does not contribute to the observed helicase activity and may instead be involved in the recognition of recombination hotspot sequences.  相似文献   

14.
Homologous pairing in vitro stimulated by the recombination hotspot, Chi.   总被引:24,自引:0,他引:24  
D A Dixon  S C Kowalczykowski 《Cell》1991,66(2):361-371
Genetic recombination in Escherichia coli is stimulated at DNA sequences known as Chi sites, 5'-GCT-GGTGG-3'. We describe the in vitro formation of homologously paired joint molecules that is dependent upon this recombination hotspot. Chi-dependent joint molecule formation requires RecA, RecBCD, and SSB proteins and a Chi site in the donor linear dsDNA. The donor dsDNA is unwound by RecBCD enzyme, and the invasive strand is generated by nicking at Chi. This Chi-dependent invading strand must contain homology to the recipient supercoiled DNA substrate at its newly formed 3' end for efficient joint molecule formation. Action at Chi generates invasive ssDNA from the 5' but not the 3' side of Chi, suggesting that the nuclease activity of RecBCD enzyme is attenuated upon encountering a Chi site. These results support the view that RecBCD enzyme action can precede RecA protein action and reconcile the seemingly opposing degradative and recombination functions of RecBCD enzyme.  相似文献   

15.
The Dna2 protein is a multifunctional enzyme with 5'-3' DNA helicase, DNA-dependent ATPase, 3' exo/endonuclease, and 5' exo/endonuclease. The enzyme is highly specific for structures containing single-stranded flaps adjacent to duplex regions. We report here two novel activities of both the yeast and human Dna2 helicase/nuclease protein: single strand annealing and ATP-independent strand exchange on short duplexes. These activities are independent of ATPase/helicase and nuclease activities in that mutations eliminating either nuclease or ATPase/helicase do not inhibit strand annealing or strand exchange. ATP inhibits strand exchange. A model rationalizing the multiple catalytic functions of Dna2 and leading to its coordination with other enzymes in processing single-stranded flaps during DNA replication and repair is presented.  相似文献   

16.
The two main recombination pathways in Escherichia coli (RecBCD and RecF) have different recombination machineries that act independently in the initiation of recombination. Three essential enzymatic activities are required for early recombinational processing of double-stranded DNA ends and breaks: a helicase, a 5'-->3' exonuclease, and loading of RecA protein onto single-stranded DNA tails. The RecBCD enzyme performs all of these activities, whereas the recombination machinery of the RecF pathway consists of RecQ (helicase), RecJ (5'-->3' exonuclease), and RecFOR (RecA-single-stranded DNA filament formation). The recombination pathway operating in recB (nuclease-deficient) mutants is a hybrid because it includes elements of both the RecBCD and RecF recombination machineries. In this study, genetic analysis of recombination in a recB (nuclease-deficient) recD double mutant was performed. We show that conjugational recombination and DNA repair after UV and gamma irradiation in this mutant are highly dependent on recJ, partially dependent on recFOR, and independent of recQ. These results suggest that the recombination pathway operating in a nuclease-deficient recB recD double mutant is also a hybrid. We propose that the helicase and RecA loading activities belong to the RecBCD recombination machinery, while the RecJ-mediated 5'-->3' exonuclease is an element of the RecF recombination machinery.  相似文献   

17.
Bacteriophage P22 Abc2 protein binds to the RecBCD enzyme from Escherichia coli to promote phage growth and recombination. Overproduction of the RecC subunit in vivo, but not RecB or RecD, interfered with Abc2-induced UV sensitization, revealing that RecC is the target for Abc2 in vivo. UV-induced ATP crosslinking experiments revealed that Abc2 protein does not interfere with the binding of ATP to either the RecB or RecD subunits in the absence of DNA, though it partially inhibits RecBCD ATPase activity. Productive growth of phage P22 in wild-type Salmonella typhimurium correlates with the presence of Abc2, but is independent of the absolute level of ATP-dependent nuclease activity, suggesting a qualitative change in the nature of Abc2-modified RecBCD nuclease activity relative to the native enzyme. In lambda phage crosses, Abc2-modified RecBCD could substitute for lambda exonuclease in Red-promoted recombination; lambda Gam could not. In exonuclease assays designed to examine the polarity of digestion, Abc2 protein qualitatively changes the nature of RecBCD double-stranded DNA exonuclease by increasing the rate of digestion of the 5' strand. In this respect, Abc2-modified RecBCD resembles a RecBCD molecule that has encountered the recombination hotspot Chi. However, unlike Chi-modified RecBCD, Abc2-modified RecBCD still possesses 3' exonuclease activity. These results are discussed in terms of a model in which Abc2 converts the RecBCD exonuclease for use in the P22 phage recombination pathway. This mechanism of P22-mediated recombination distinguishes it from phage lambda recombination, in which the phage recombination system (Red) and its anti-RecBCD function (Gam) work independently.  相似文献   

18.
Comparison of subunit AddA of the Bacillus subtilis AddAB enzyme, subunit RecB of the Escherichia coli RecBCD enzyme, and subunit RecB of the Haemophilus influenzae RecBCD enzyme revealed several regions of homology. Whereas the first seven regions are common among helicases, the two C-terminally located regions are unique for RecB of E. coli and H. influenzae and AddA. Deletion of the C-terminal region resulted in the production of an enzyme which showed moderately impaired levels of ATP-dependent helicase activity, whereas the ATP-dependent exonuclease activity was completely destroyed. The mutant enzyme was almost completely capable of complementing E. coli recBCD and B. subtilis addAB strains with respect to DNA repair and homologous recombination. These results strongly suggest that at least part of the C-terminal region of the AddA protein is indispensable for exonuclease activity and that, in contrast to the exonuclease activity, the helicase activity of the addAB gene product is important for DNA repair and homologous recombination.  相似文献   

19.
Dermić D 《Genetics》2006,172(4):2057-2069
Heterotrimeric RecBCD enzyme unwinds and resects a DNA duplex containing blunt double-stranded ends and directs loading of the strand-exchange protein RecA onto the unwound 3'-ending strand, thereby initiating the majority of recombination in wild-type Escherichia coli. When the enzyme lacks its RecD subunit, the resulting RecBC enzyme, active in recD mutants, is recombination proficient although it has only helicase and RecA loading activity and is not a nuclease. However, E. coli encodes for several other exonucleases that digest double-stranded and single-stranded DNA and thus might act in consort with the RecBC enzyme to efficiently promote recombination reactions. To test this hypothesis, I inactivated multiple exonucleases (i.e., exonuclease I, exonuclease X, exonuclease VII, RecJ, and SbcCD) in recD derivatives of the wild-type and nuclease-deficient recB1067 strain and assessed the ability of the resultant mutants to maintain cell viability and to promote DNA repair and homologous recombination. A complex pattern of overlapping and sometimes competing activities of multiple exonucleases in recD mutants was thus revealed. These exonucleases were shown to be essential for cell viability, DNA repair (of UV- and gamma-induced lesions), and homologous recombination (during Hfr conjugation and P1 transduction), which are dependent on the RecBC enzyme. A model for donor DNA processing in recD transconjugants and transductants was proposed.  相似文献   

20.
RecBCD enzyme switches lead motor subunits in response to chi recognition   总被引:1,自引:0,他引:1  
RecBCD is a DNA helicase comprising two motor subunits, RecB and RecD. Recognition of the recombination hotspot, chi, causes RecBCD to pause and reduce translocation speed. To understand this control of translocation, we used single-molecule visualization to compare RecBCD to the RecBCD(K177Q) mutant with a defective RecD motor. RecBCD(K177Q) paused at chi but did not change its translocation velocity. RecBCD(K177Q) translocated at the same rate as the wild-type post-chi enzyme, implicating RecB as the lead motor after chi. P1 nuclease treatment eliminated the wild-type enzyme's velocity changes, revealing a chi-containing ssDNA loop preceding chi recognition and showing that RecD is the faster motor before chi. We conclude that before chi, RecD is the lead motor but after chi, the slower RecB motor leads, implying a switch in motors at chi. We suggest that degradation of foreign DNA needs fast translocation, whereas DNA repair uses slower translocation to coordinate RecA loading onto ssDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号