首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
p33cdk2 is a serine-threonine protein kinase that associates with cyclins A, D, and E and has been implicated in the control of the G1/S transition in mammalian cells. Recent evidence indicates that cyclin-dependent kinase 2 (Cdk2), like its homolog Cdc2, requires cyclin binding and phosphorylation (of threonine-160) for activation in vivo. However, the extent to which mechanistic details of the activation process are conserved between Cdc2 and Cdk2 is unknown. We have developed bacterial expression and purification systems for Cdk2 and cyclin A that allow mechanistic studies of the activation process to be performed in the absence of cell extracts. Recombinant Cdk2 is essentially inactive as a histone H1 kinase (< 4 x 10(-5) pmol phosphate transferred.min-1 x microgram-1 Cdk2). However, in the presence of equimolar cyclin A, the specific activity is approximately 16 pmol.mon-1 x microgram-1, 4 x 10(5)-fold higher than Cdk2 alone. Mutation of T160 in Cdk2 to either alanine or glutamic acid had little impact on the specific activity of the Cdk2/cyclin A complex: the activity of Cdk2T160E was indistinguishable from Cdk2, whereas that of Cdk2T160A was reduced by five-fold. To determine if the Cdk2/cyclin A complex could be activated further by phosphorylation of T160, complexes were treated with Cdc2 activating kinase (CAK), purified approximately 12,000-fold from Xenopus eggs. This treatment resulted in an 80-fold increase in specific activity. This specific activity is comparable with that of the Cdc2/cyclin B complex after complete activation by CAK (approximately 1600 pmol.mon-1 x microgram-1). Neither Cdk2T160A/cyclin A nor Cdk2T160E/cyclin A complexes were activated further by treatment with CAK. In striking contrast with cyclin A, cyclin B did not directly activate Cdk2. However, both Cdk2/cyclin A and Cdk2/cyclin B complexes display similar activity after activation by CAK. For the Cdk2/cyclin A complex, both cyclin binding and phosphorylation contribute significantly to activation, although the energetic contribution of cyclin A binding is greater than that of T160 phosphorylation by approximately 5 kcal/mol. The potential significance of direct activation of Cdk2 by cyclins with respect to regulation of cell cycle progression is discussed.  相似文献   

3.
4.
Estrogens induce proliferation of estrogen receptor (ER)-positive MCF-7 breast cancer cells by stimulating G(1)/S transition associated with increased cyclin D1 expression, activation of cyclin-dependent kinases (Cdks), and phosphorylation of the retinoblastoma protein (pRb). We have utilized blockade of cyclin D1-Cdk4 complex formation through adenovirus-mediated expression of p16(INK4a) to demonstrate that estrogen regulates Cdk inhibitor expression and expression of the Cdk-activating phosphatase Cdc25A independent of cyclin D1-Cdk4 function and cell cycle progression. Expression of p16(INK4a) inhibited G(1)/S transition induced in MCF-7 cells by 17-beta-estradiol (E(2)) with associated inhibition of both Cdk4- and Cdk2-associated kinase activities. Inhibition of Cdk2 activity was associated with delayed removal of Cdk-inhibitory activity in early G(1) and decreased cyclin A expression. Cdk-inhibitory activity and expression of both p21(Cip1) and p27(Kip1) was decreased, however, in both control and p16(INK4a)-expressing cells 20 h after estrogen treatment. Expression of Cdc25A mRNA and protein was induced by E(2) in control and p16(INK4a)-expressing MCF-7 cells; however, functional activity of Cdc25A was inhibited in cells expressing p16(INK4a). Inhibition of Cdc25A activity in p16(INK4a)-expressing cells was associated with depressed Cdk2 activity and was reversed in vivo and in vitro by active Cdk2. Transfection of MCF-7 cells with a dominant-negative Cdk2 construct inhibited the E(2)-dependent activation of ectopic Cdc25A. Supporting a role for Cdc25A in estrogen action, antisense CDC25A oligonucleotides inhibited estrogen-induced Cdk2 activation and DNA synthesis. In addition, inactive cyclin E-Cdk2 complexes from p16(INK4a)-expressing, estrogen-treated cells were activated in vitro by treatment with recombinant Cdc25A and in vivo in cells overexpressing Cdc25A. The results demonstrate that functional association of cyclin D1-Cdk4 complexes is required for Cdk2 activation in MCF-7 cells and that Cdk2 activity is, in turn, required for the in vivo activation of Cdc25A. These studies establish Cdc25A as a growth-promoting target of estrogen action and further indicate that estrogens independently regulate multiple components of the cell cycle machinery, including expression of p21(Cip1) and p27(Kip1).  相似文献   

5.
6.
It has been long believed that the cyclin-dependent kinase 2 [Cdk2] binds to cyclin E or cyclin Aand exclusively promotes the G1/S phase transition and that Cdc2/cyclin B complexes play a majorrole in mitosis. We now provide evidence that Cdc2 binds to cyclin E [in addition to cyclin A & B]and is able to promote the G1/S transition. This new concept indicates that both Cdk2 and/or Cdc2can drive cells through G1/S phase in parallel. In this review we discuss the classic cell cycle modeland how results from knockout mice provide new evidence that refute this model. We focus on newroles of Cdc2 and p27 in regulating the mammalian cell cycle and propose a new model for cellcycle regulation that accommodates these novel findings.  相似文献   

7.
Rho family GTPases play a major role in actin cytoskeleton reorganization. Recent studies have shown that the activation of Rho family GTPases also induces collapse of the vimentin intermediate filament (IF) network in fibroblasts. Here, we report that Cdc42V12 induces the reorganization of vimentin IFs in Hela cells, and such reorganization is independent of actin and microtubule status. We analyzed the involvement of three serine/threonine kinase effectors, MRCK, PAK and p70 S6K in the Cdc42-induced vimentin reorganization. Surprisingly, the ROK-related MRCK is not involved in this IF reorganization. We detected phosphorylation of vimentin Ser72, a site phosphorylated by PAK, after Cdc42 activation. PAK inhibition partially blocked Cdc42-induced vimentin IF collapse suggesting the involvement of other effectors. We report that p70 S6 kinase (S6K)1 participates in this IF rearrangement since the inhibitor rapamycin or a dominant inhibitory S6K could reduce the Cdc42V12 or bradykinin-induced vimentin collapse. Further, inhibition of PAK and S6K in combination very effectively prevents Cdc42-induced vimentin IF collapse. Conversely, only in combination active PAK and S6K could induce a vimentin IF rearrangement that mimics the Cdc42 effect. Thus, Cdc42-induced vimentin reorganization involves PAK and, in a novel cytoskeletal role, p70 S6K.  相似文献   

8.
We have previously shown that cyclin E can malignantly transform primary rat embryo fibroblasts in cooperation with constitutively active Ha-Ras. In addition, we demonstrated that high level cyclin E expression potentiates the development of methyl-nitroso-urea-induced T-cell lymphomas in mice. To further investigate the mechanism underlying cyclin E-mediated malignant transformation, we have performed a mutational analysis of cyclin E function. Here we show that cyclin E mutants defective to form an active kinase complex with Cdk2 are unable to drive cells from G(1) into S phase but can still malignantly transform rat embryo fibroblasts in cooperation with Ha-Ras. In addition, Cdk2 activation is not a prerequisite for the ability of cyclin E to rescue yeast triple cln mutations. We also find that the oncogenic properties of cyclin E did not entirely correspond with its ability to interact with the negative cell cycle regulator p27(Kip1) or the pocket protein p130. These findings suggest that the oncogenic activity of cyclin E does not exclusively rely on its ability as a positive regulator of G(1) progression. Rather, we propose that cyclin E harbors other functions, independent of Cdk2 activation and p27(Kip1) binding, that contribute significantly to its oncogenic activity.  相似文献   

9.
10.
Rho-like GTPases orchestrate distinct cytoskeletal changes in response to receptor stimulation. Invasion of T-lymphoma cells into a fibroblast monolayer is induced by Tiam1, an activator of the Rho-like GTPase Rac, and by constitutively active V12Rac1. Here we show that activated V12Cdc42 can also induce invasion of T-lymphoma cells. Activated RhoA potentiates invasion, but fails by itself to mimic Rac and Cdc42. However, invasion is inhibited by the Rho-inactivating C3 transferase. Thus, RhoA is required but not sufficient for invasion. Invasion of T-lymphoma cells is critically dependent on the presence of serum. Serum can be replaced by the serum-borne lipids lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) (10(-7)-10(-6) M), which act on distinct G protein-linked receptors to activate RhoA and phospholipase C (PLC)-Ca2+ signaling. LPA- and S1P-induced invasion is preceded by Rho-dependent F-actin redistribution and pseudopodia formation. However, expression of both V14RhoA and V12Rac1 does not bypass the LPA/S1P requirement for invasion, indicating involvement of an additional signaling pathway independent of RhoA. The PLC inhibitor U-73122, but not the inactive analog U-73343, abolishes invasion. Our results indicate that T-lymphoma invasion is driven by Tiam1/Rac or Cdc42 activation, and is dependent on LPA/S1P receptor-mediated RhoA and PLC signaling pathways which lead to pseudopod formation and enhanced infiltration.  相似文献   

11.
Cdc2-cyclin E complexes regulate the G1/S phase transition   总被引:14,自引:0,他引:14  
The cyclin-dependent kinase inhibitor p27(Kip1) is known as a negative regulator of cell-cycle progression and as a tumour suppressor. Cdk2 is the main target of p27 (refs 2, 3) and therefore we hypothesized that loss of Cdk2 activity should modify the p27(-/-) mouse phenotype. Here, we show that although p27(-/-) Cdk2(-/-) mice developed ovary tumours and tumours in the anterior lobe of the pituitary, we failed to detect any functional complementation in p27(-/-) Cdk2(-/-) double-knockout mice, indicating a parallel pathway regulated by p27. We observed elevated levels of S phase and mitosis in tissues of p27(-/-) Cdk2(-/-) mice concomitantly with elevated Cdc2 activity in p27(-/-) Cdk2(-/-) extracts. p27 binds to Cdc2, cyclin B1, cyclin A2, or suc1 complexes in wild-type and Cdk2(-/-) extracts. In addition, cyclin E binds to and activates Cdc2. Our in vivo results provide strong evidence that Cdc2 may compensate the loss of Cdk2 function.  相似文献   

12.
13.
14.
Little is known about the posttranslational control of the cyclin-dependent protein kinase (CDK) inhibitor p21. We describe here a transient phosphorylation of p21 in the G2/M phase. G2/M-phosphorylated p21 is short-lived relative to hypophosphorylated p21. p21 becomes nuclear during S phase, prior to its phosphorylation by CDK2. S126-phosphorylated cyclin B1 binds to T57-phosphorylated p21. Cdc2 kinase activation is delayed in p21-deficient cells due to delayed association between Cdc2 and cyclin B1. Cyclin B1-Cdc2 kinase activity and G2/M progression in p21-/- cells are restored after reexpression of wild-type but not T57A mutant p21. The cyclin B1 S126A mutant exhibits reduced Cdc2 binding and has low kinase activity. Phosphorylated p21 binds to cyclin B1 when Cdc2 is phosphorylated on Y15 and associates poorly with the complex. Dephosphorylation on Y15 and phosphorylation on T161 promotes Cdc2 binding to the p21-cyclin B1 complex, which becomes activated as a kinase. Thus, hyperphosphorylated p21 activates the Cdc2 kinase in the G2/M transition.  相似文献   

15.
Origins of DNA replication are licensed through the assembly of a chromatin-bound prereplication complex. Multiple regulatory mechanisms block new prereplication complex assembly after the G1/S transition to prevent rereplication. The strict inhibition of licensing after the G1/S transition means that all origins used in S phase must have been licensed in the preceding G1. Nevertheless mechanisms that coordinate S phase entry with the completion of origin licensing are still poorly understood. We demonstrate that depletion of either of two essential licensing factors, Cdc6 or Cdt1, in normal human fibroblasts induces a G1 arrest accompanied by inhibition of cyclin E/Cdk2 activity and hypophosphorylation of Rb. The Cdk2 inhibition is attributed to a reduction in the essential activating phosphorylation of T160 and an associated delay in Cdk2 nuclear accumulation. In contrast, licensing inhibition in the HeLa or U2OS cancer cell lines failed to regulate Cdk2 or Rb phosphorylation, and these cells died by apoptosis. Co-depletion of Cdc6 and p53 in normal cells restored Cdk2 activation and Rb phosphorylation, permitting them to enter S phase with a reduced rate of replication and also to accumulate markers of DNA damage. These results demonstrate dependence on origin licensing for multiple events required for G1 progression, and suggest a mechanism to prevent premature S phase entry that functions in normal cells but not in p53-deficient cells.  相似文献   

16.
Eukaryotic cell cycle progression is controlled by a family of protein kinases known as cyclin-dependent kinases (Cdks). Two steps are essential for Cdk activation: binding of a cyclin and phosphorylation on a conserved threonine residue by the Cdk-activating kinase (CAK). We have studied the interplay between these regulatory mechanisms during the activation of the major Saccharomyces cerevisiae Cdk, Cdc28p. We found that the majority of Cdc28p was phosphorylated on its activating threonine (Thr-169) throughout the cell cycle. The extent of Thr-169 phosphorylation was similar for monomeric Cdc28p and Cdc28p bound to cyclin. By varying the order of the addition of cyclin and Cak1p, we determined that Cdc28p was activated most efficiently when it was phosphorylated before cyclin binding. Furthermore, we found that a Cdc28p(T169A) mutant, which cannot be phosphorylated, bound cyclin less well than wild-type Cdc28p in vivo. These results suggest that unphosphorylated Cdc28p may be unable to bind tightly to cyclin. We propose that Cdc28p is normally phosphorylated by Cak1p before it binds cyclin. This activation pathway contrasts with that in higher eukaryotes, in which cyclin binding appears to precede activating phosphorylation.  相似文献   

17.
In mammalian cells Cdk2 activity during the G(1)-S transition is mainly controlled by p27(KIP1). Although the amount and subcellular localization of p27 influence Cdk2 activity, how Cdk2 activity is regulated during this phase transition still remains virtually unknown. Here we report an entirely new mechanism for this regulation. Cdc6 the AAA+ ATPase, known to assemble prereplicative complexes on chromosomal replication origins and activate p21(CIP1)-bound Cdk2, also activated p27-bound Cdk2 in its ATPase and cyclin binding motif-dependent manner but only after the p27 bound to the Cdk2 was phosphorylated at the C terminus. ROCK, which mediates a signal for cell anchorage to the extracellular matrix and activates the mTORC1 cascade as well as controls cytoskeleton assembly, was partly responsible for C-terminal phosphorylation of the p27. In vitro reconstitution demonstrated ROCK (Rho-associated kinase)-mediated phosphorylation of Cdk2-bound p27 at the C terminus and subsequent activation of the Cdk2 by Cdc6.  相似文献   

18.
The M-phase inducer, Cdc25C, is a dual-specificity phosphatase that directly phosphorylates and activates the cyclin B/Cdc2 kinase complex, leading to initiation of mitosis. Cdc25 itself is activated at the G2/M transition by phosphorylation on serine and threonine residues. Previously, it was demonstrated that Cdc2 kinase is capable of phosphorylating and activating Cdc25, suggesting the existence of a positive feedback loop. In the present study, kinases other than Cdc2 that can phosphorylate and activate Cdc25 were investigated. Cdc25 was found to be phosphorylated and activated by cyclin A/Cdk2 and cyclin E/Cdk2 in vitro. However, in interphase Xenopus egg extracts with no detectable Cdc2 and Cdk2, treatment with the phosphatase inhibitor microcystin activated a distinct kinase that could phosphorylate and activate Cdc25. Microcystin also induced other mitotic phenomena such as chromosome condensation and nuclear envelope breakdown in extracts containing less than 5% of the mitotic level of Cdc2 kinase activity. These findings implicate a kinase other than Cdc2 and Cdk2 that may initially activate Cdc25 in vivo and suggest that this kinase may also phosphorylate M-phase substrates even in the absence of Cdc2 kinase.  相似文献   

19.
The abilities of mutated active K-RAS and H-RAS proteins, in an isogenic human carcinoma cell system, to modulate the activity of signaling pathways and cell cycle progression following exposure to ionizing radiation is largely unknown. Loss of K-RAS D13 expression in parental HCT116 colorectal carcinoma cells blunted basal ERK1/2, AKT and JNK1/2 activity by ~70%. P38 activity was not detected. Deletion of the allele to express activated K-RAS nearly abolished radiation-induced activation of all signaling pathways. Expression of H-RAS V12 in HCT116 cells lacking an activated RAS molecule (H-RAS V12 cells) restored basal ERK1/2 and AKT activity to that observed in parental cells, but did not restore or alter basal JNK1/2 and p38 activity. In parental cells radiation (1 Gy) caused stronger ERK1/2 pathway activation compared to that of the PI3K/AKT pathway. In H-RAS V12 cells radiation caused stronger PI3K/AKT pathway activation compared to that of the ERK1/2 pathway. Radiation (1 Gy) promoted S phase entry in parental HCT116 cells within 24h, but not in either HCT116 cells lacking K-RAS D13 expression or in H-RAS V12 cells. In parental cells radiation-stimulated S phase entry correlated with ERK1/2-, JNK1/2- and PI3K-dependent increased expression of cyclin D1 and cyclin A, and to a lesser extent cyclin E, 6–24 h after exposure. Cyclin A and cyclin D1 expression were not increased by radiation in cells lacking K-RAS D13 expression or in H-RAS V12 cells. Radiation (1 Gy) modestly enhanced expression of p53, hMDM2 and p21 in parental cells 2-6h after exposure, which was abolished in cells lacking K-RAS D13 expression. Introduction of H-RAS V12 into cells lacking mutant active RAS partially restored radiation-induced expression of p21 and p53, and enhanced the induction of hMDM2 beyond that observed in parental cells. Collectively, our findings argue that the coordinated activation of multiple signaling pathways, in particular ERK1/2 and JNK1/2, by radiation is required to elevate the expression of G1 and S phase cyclin proteins and to promote S phase entry in human colon carcinoma cells expressing wild type p53. In HCT116 cells H-RAS V12 promotes hMDM2 expression after radiation exposure which correlates with reduced p53 expression and increased cell survival.  相似文献   

20.
Using an in vitro chromatin assembly assay in Xenopus egg extract, we show that cyclin E binds specifically and saturably to chromatin in three phases. In the first phase, the origin recognition complex and Cdc6 prereplication proteins, but not the minichromosome maintenance complex, are necessary and biochemically sufficient for ATP-dependent binding of cyclin E--Cdk2 to DNA. We find that cyclin E binds the NH(2)-terminal region of Cdc6 containing Cy--Arg-X-Leu (RXL) motifs. Cyclin E proteins with mutated substrate selection (Met-Arg-Ala-Ile-Leu; MRAIL) motifs fail to bind Cdc6, fail to compete with endogenous cyclin E--Cdk2 for chromatin binding, and fail to rescue replication in cyclin E--depleted extracts. Cdc6 proteins with mutations in the three consensus RXL motifs are quantitatively deficient for cyclin E binding and for rescuing replication in Cdc6-depleted extracts. Thus, the cyclin E--Cdc6 interaction that localizes the Cdk2 complex to chromatin is important for DNA replication. During the second phase, cyclin E--Cdk2 accumulates on chromatin, dependent on polymerase activity. In the third phase, cyclin E is phosphorylated, and the cyclin E--Cdk2 complex is displaced from chromatin in mitosis. In vitro, mitogen-activated protein kinase and especially cyclin B--Cdc2, but not the polo-like kinase 1, remove cyclin E--Cdk2 from chromatin. Rebinding of hyperphosphorylated cyclin E--Cdk2 to interphase chromatin requires dephosphorylation, and the Cdk kinase-directed Cdc14 phosphatase is sufficient for this dephosphorylation in vitro. These three phases of cyclin E association with chromatin may facilitate the diverse activities of cyclin E--Cdk2 in initiating replication, blocking rereplication, and allowing resetting of origins after mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号