首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Acyl carrier protein participates in a number of biosynthetic pathways in Escherichia coli: fatty acid biosynthesis, phospholipid biosynthesis, lipopolysaccharide biosynthesis, activation of prohemolysin, and membrane-derived oligosaccharide biosynthesis. The first four pathways require the protein's prosthetic group, phosphopantetheine, to assemble an acyl chain or to transfer an acyl group from the thioester linkage to a specific substrate. By contrast, the phosphopantetheine prosthetic group is not required for membrane-derived oligosaccharide biosynthesis, and the function of acyl carrier protein in this biosynthetic scheme is currently unknown. We have combined biochemical and molecular biological approaches to investigate domains of acyl carrier protein that are important for membrane-derived oligosaccharide biosynthesis. Proteolytic removal of the first 6 amino acids from acyl carrier protein or chemical synthesis of a partial peptide encompassing residues 26 to 50 resulted in losses of secondary and tertiary structure and consequent loss of activity in the membrane glucosyltransferase reaction of membrane-derived oligosaccharide biosynthesis. These peptide fragments, however, inhibited the action of intact acyl carrier protein in the enzymatic reaction. This suggests a role for the loop regions of the E. coli acyl carrier protein and the need for at least two regions of the protein for participation in the glucosyltransferase reaction. We have purified acyl carrier protein from eight species of Proteobacteria (including representatives from all four subgroups) and characterized the proteins as active or inhibitory in the membrane glucosyltransferase reaction. The complete or partial amino acid sequences of these acyl carrier proteins were determined. The results of site-directed mutagenesis to change amino acids conserved in active, and altered in inactive, acyl carrier proteins suggest the importance of residues Glu-4, Gln-14, Glu-21, and Asp-51. The first 3 of these residues define a face of acyl carrier protein that includes the beginning of the loop region, residues 16 to 36. Additionally, screening for membrane glucosyltransferase activity in membranes from bacterial species that had acyl carrier proteins that were active with E. coli membranes revealed the presence of glucosyltransferase activity only in the species most closely related to E. coli. Thus, it seems likely that only bacteria from the Proteobacteria subgroup gamma-3 have periplasmic glucans synthesized by the mechanism found in E. coli.  相似文献   

2.
A synthetic spinach acyl carrier protein-I (ACP-I) gene was cloned and expressed in the Escherichia coli beta-alanine auxotroph SJ16 (P. D. Beremand et al. (1987) Arch. Biochem. Biophys. 256, 90-100). After characterization of the transformed cells and purification of the protein product it was evident that 50% of the recombinant spinach ACP-I was acylated during early log-phase growth (D. J. Guerra et al. (1988) J. Biol. Chem. 263, 4386-4391). We have purified the recombinant acyl-acyl carrier protein-I to greater than 90% homogeneity and have made a fatty acid methyl ester of the delipidated and trypsin-treated preparation. We have found that the acyl moiety attached to recombinant spinach acyl carrier protein-I is 18:1 delta 11(cis) (cis-vaccenic acid) a major unsaturated end product of Escherichia coli de novo fatty acid synthesis. This result reflects previous work (D. S. Guerra et al. (1986) Plant Physiol. 82, 448-453) which suggested the acyl carrier protein-I structure has evolved from ancestral ACP structures to accommodate the eukaryotic pathway of lipid synthesis in higher plants. The accumulation of recombinant 18:1 delta 11(cis) acyl carrier protein-I in transformed E. coli SJ16 cells attests to the poor reactivity of this substrate to acyl transferase reactions and may help explain the lack of effect on pools of fatty acids found in vivo.  相似文献   

3.
Two distinct pathways for the incorporation of exogenous fatty acids into phospholipids were identified in Escherichia coli. The predominant route originates with the activation of fatty acids by acyl-CoA synthetase followed by the distribution of the acyl moieties into all phospholipid classes via the sn-glycerol-3-phosphate acyltransferase reaction. This pathway was blocked in mutants (fadD) lacking acyl-CoA synthetase activity. In fadD strains, exogenous fatty acids were introduced exclusively into the 1-position of phosphatidylethanolamine. This secondary route is related to 1-position fatty acid turnover in phosphatidylethanolamine and proceeds via the acyl-acyl carrier protein synthetase/2-acylglycerophosphoethanolamine acyltransferase system. The turnover pathway exhibited a preference for saturated fatty acids, whereas the acyl-CoA synthetase-dependent pathway was less discriminating. Both pathways were inhibited in mutants (fadL) lacking the fatty acid permease, demonstrating that the fadL gene product translocates exogenous fatty acids to an intracellular pool accessible to both synthetases. These data demonstrate that acyl-CoA synthetase is not required for fatty acid transport in E. coli and that the metabolism of exogenous fatty acids is segregated from the metabolism of acyl-acyl carrier proteins derived from fatty acid biosynthesis.  相似文献   

4.
P Jiang  J E Cronan  Jr 《Journal of bacteriology》1994,176(10):2814-2821
The effects of inhibition of Escherichia coli phospholipid synthesis on the accumulation of intermediates of the fatty acid synthetic pathway have been previously investigated with conflicting results. We report construction of an E. coli strain that allows valid [14C]acetate labeling of fatty acids under these conditions. In this strain, acetate is a specific precursor of fatty acid synthesis and the intracellular acetate pools are not altered by blockage of phospholipid synthesis. By use of this strain, we show that significant pools of fatty acid synthetic intermediates and free fatty acids accumulate during inhibition of phospholipid synthesis and that the rate of synthesis of these intermediates is 10 to 20% of the rate at which fatty acids are synthesized during normal growth. Free fatty acids of abnormal chain length (e.g., cis-13-eicosenoic acid) were found to accumulate in glycerol-starved cultures. Analysis of extracts of [35S]methionine-labeled cells showed that glycerol starvation resulted in the accumulation of several long-chain acyl-acyl carrier protein (ACP) species, with the major species being ACP acylated with cis-13-eicosenoic acid. Upon the restoration of phospholipid biosynthesis, the abnormally long-chain acyl-ACPs decreased, consistent with transfer of the acyl groups to phospholipid. The introduction of multicopy plasmids that greatly overproduced either E. coli thioesterase I or E. coli thioesterase II fully relieved the inhibition of fatty acid synthesis seen upon glycerol starvation, whereas overexpression of ACP had no effect. Thioesterase I overproduction also resulted in disappearance of the long-chain acyl-ACP species. The release of inhibition by thiosterase overproduction, together with the correlation between the inhibition of fatty acid synthesis and the presence of abnormally long-chain acyl-ACPs, suggests with that these acyl-ACP species may act as feedback inhibitors of a key fatty acid synthetic enzyme(s).  相似文献   

5.
The anaerobic pathway for unsaturated fatty acid synthesis was established in the 1960s in Escherichia coli. The double bond is introduced into the growing acyl chain by FabA, an enzyme capable of both the dehydration of beta-hydroxydecanoyl-acyl carrier protein (ACP) to trans-2-decenoyl-ACP, and the isomerization of trans-2 to cis-3-decenoyl-ACP. However, there are a number of anaerobic bacteria whose genomes do not contain a fabA homolog, although these organisms nonetheless produce unsaturated fatty acids. We cloned and biochemically characterized a new enzyme in type II fatty acid synthesis from Streptococcus pneumoniae that carries out the isomerization of trans-2-decenoyl-ACP to cis-3-decenoyl-ACP, but is not capable of catalyzing the dehydration of beta-hydroxy intermediates. This tetrameric enzyme, designated FabM, has no similarity to FabA, but rather is a member of the hydratase/isomerase superfamily. Thus, the branch point in the biosynthesis of unsaturated fatty acids in S. pneumoniae occurs following the formation of trans-2-decenoyl-ACP, in contrast to E. coli where the branch point takes place after the formation of beta-hydroxydecanoyl-ACP.  相似文献   

6.
Phospholipid biosynthesis is a vital facet of bacterial physiology that begins with the synthesis of the fatty acids by a soluble type II fatty acid synthase. The bacterial glycerol-phosphate acyltransferases utilize the completed fatty acid chains to form the first membrane phospholipid and thus play a critical role in the regulation of membrane biogenesis. The first bacterial acyltransferase described was PlsB, a glycerol-phosphate acyltransferase. PlsB is a key regulatory point that coordinates membrane phospholipid formation with cell growth and macromolecular synthesis. Phosphatidic acid is then produced by PlsC, a 1-acylglycerol-phosphate acyltransferase. These two acyltransferases use thioesters of either CoA or acyl carrier protein (ACP) as the acyl donors and have homologs that perform the same reactions in higher organisms. However, the most prevalent glycerol-phosphate acyltransferase in the bacterial world is PlsY, which uses a recently discovered acyl-phosphate fatty acid intermediate as an acyl donor. This unique activated fatty acid is formed from the acyl-ACP end products of the fatty acid biosynthetic pathway by PlsX, an acyl-ACP:phosphate transacylase.  相似文献   

7.
Growth of Escherichia coli in the presence of ethanol and chaotropic salts resulted in the synthesis of lipids containing elevated levels of unsaturated fatty acids analogous to the effect of a reduction in growth temperature. Both ethanol and chaotropic agents acted at the level of fatty acid biosynthesis and altered lipid composition by decreasing the proportion of saturated acyl chains available for the synthesis of phospholipids. A reduction in temperature causes similar effects on fatty acid biosynthesis in vivo and in vitro. Ethanol, chaotropic salts, and a decrease in temperature all weaken hydrophobic interactions. Antichaotropic salts antagonized and effects of these treatments on fatty acid synthesis in vitro. These results are consistent with a common mechanism for the effects of chaotropic agents, temperature, and ethanol on fatty acid synthesis. The biosynthesis of saturated and unsaturated acyl chains may be regulated by the strength of hydrophobic interactions. Changes in the strength of hydrophobic interactions could alter enzyme structure, substrate structure, or the equilibrium between the soluble enzymes of fatty acid synthesis and their respective acyl carrier protein substrates.  相似文献   

8.
Mycolic acids are vital components of the Mycobacterium tuberculosis cell wall, and enzymes involved in their formation represent attractive targets for the discovery of novel anti-tuberculosis agents. Biosynthesis of the fatty acyl chains of mycolic acids involves two fatty acid synthetic systems, the multifunctional polypeptide fatty acid synthase I (FASI), which performs de novo fatty acid synthesis, and the dissociated FASII system, which consists of monofunctional enzymes, and acyl carrier protein (ACP) and elongates FASI products to long chain mycolic acid precursors. In this study, we present the initial characterization of purified KasA and KasB, two beta-ketoacyl-ACP synthase (KAS) enzymes of the M. tuberculosis FASII system. KasA and KasB were expressed in E. coli and purified by affinity chromatography. Both enzymes showed activity typical of bacterial KASs, condensing an acyl-ACP with malonyl-ACP. Consistent with the proposed role of FASII in mycolic acid synthesis, analysis of various acyl-ACP substrates indicated KasA and KasB had higher specificity for long chain acyl-ACPs containing at least 16 carbons. Activity of KasA and KasB increased with use of M. tuberculosis AcpM, suggesting that structural differences between AcpM and E. coli ACP may affect their recognition by the enzymes. Both enzymes were sensitive to KAS inhibitors cerulenin and thiolactomycin. These results represent important steps in characterizing KasA and KasB as targets for antimycobacterial drug discovery.  相似文献   

9.
Mitochondria and fatty acids are tightly connected to a multiplicity of cellular processes that go far beyond mitochondrial fatty acid metabolism. In line with this view, there is hardly any common metabolic disorder that is not associated with disturbed mitochondrial lipid handling. Among other aspects of mitochondrial lipid metabolism, apparently all eukaryotes are capable of carrying out de novo fatty acid synthesis (FAS) in this cellular compartment in an acyl carrier protein (ACP)-dependent manner. The dual localization of FAS in eukaryotic cells raises the questions why eukaryotes have maintained the FAS in mitochondria in addition to the “classic” cytoplasmic FAS and what the products are that cannot be substituted by delivery of fatty acids of extramitochondrial origin. The current evidence indicates that mitochondrial FAS is essential for cellular respiration and mitochondrial biogenesis. Although both β-oxidation and FAS utilize thioester chemistry, CoA acts as acyl-group carrier in the breakdown pathway whereas ACP assumes this role in the synthetic direction. This arrangement metabolically separates these two pathways running towards opposite directions and prevents futile cycling. A role of this pathway in mitochondrial metabolic sensing has recently been proposed. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.  相似文献   

10.
Proteins antigenically similar to the acyl carrier protein (ACP) found in the mitochondria of Neurospora crassa were detected by immunoblotting and radioimmunoassay techniques in mitochondria isolated from yeast, potatoes, and pea leaves. These mitochondrial proteins were similar to Neurospora ACP both in their electrophoretic mobility and in their unusual decrease in mobility upon reduction. Authentic ACP(s) show this type of change upon conversion of the acylated to the unacylated form. Purified ACP from both spinach chloroplasts and Escherichia coli cells cross-reacted with antibodies raised against Neurospora ACP. Purified ACP from Neurospora cross-reacted with antibodies raised against spinach chloroplast ACP and E. coli ACP. Mitochondria isolated from beef heart and rat brain were tested extensively and exhibited no cross-reaction with any of the three anti-ACP preparations. The discovery of ACP in the mitochondria of other organisms raises questions concerning the possible relationship between ACP and beta-oxidation in mitochondria, the involvement of ACP in de novo biosynthesis of some of the acyl chains in mitochondria and the subcellular locations of fatty acid biosynthesis in plants and eucaryotic micro-organisms.  相似文献   

11.
Zhu K  Rock CO 《Journal of bacteriology》2008,190(9):3147-3154
Pseudomonas aeruginosa secretes a rhamnolipid (RL) surfactant that functions in hydrophobic nutrient uptake, swarming motility, and pathogenesis. We show that RhlA supplies the acyl moieties for RL biosynthesis by competing with the enzymes of the type II fatty acid synthase (FASII) cycle for the beta-hydroxyacyl-acyl carrier protein (ACP) pathway intermediates. Purified RhlA forms one molecule of beta-hydroxydecanoyl-beta-hydroxydecanoate from two molecules of beta-hydroxydecanoyl-ACP and is the only enzyme required to generate the lipid component of RL. The acyl groups in RL are primarily beta-hydroxydecanoyl, and in vitro, RhlA has a greater affinity for 10-carbon substrates, illustrating that RhlA functions as a molecular ruler that selectively extracts 10-carbon intermediates from FASII. Eliminating either FabA or FabI activity in P. aeruginosa increases RL production, illustrating that slowing down FASII allows RhlA to more-effectively compete for beta-hydroxydecanoyl-ACP. In Escherichia coli, the rate of fatty acid synthesis increases 1.3-fold when RhlA is expressed, to ensure the continued formation of fatty acids destined for membrane phospholipid even though 24% of the carbon entering FASII is diverted to RL synthesis. Previous studies have placed a ketoreductase, called RhlG, before RhlA in the RL biosynthetic pathway; however, our experiments show that RhlG has no role in RL biosynthesis. We conclude that RhlA is necessary and sufficient to form the acyl moiety of RL and that the flux of carbon through FASII accelerates to support RL production and maintain a supply of acyl chains for phospholipid synthesis.  相似文献   

12.
Holo-(acyl carrier protein) synthase (AcpS) post-translationally modifies apoacyl carrier protein (apoACP) via transfer of 4'-phosphopantetheine from coenzyme A (CoA) to the conserved serine 36 gamma-OH of apoACP. The resulting holo-acyl carrier protein (holo-ACP) is then active as the central coenzyme of fatty acid biosynthesis. The acpS gene has previously been identified and shown to be essential for Escherichia coli growth. Earlier mutagenic studies isolated the E. coli MP4 strain, whose elevated growth requirement for CoA was ascribed to a deficiency in holoACP synthesis. Sequencing of the acpS gene from the E. coli MP4 strain (denoted acpS1) showed that the AcpS1 protein contains a G4D mutation. AcpS1 exhibited a approximately 5-fold reduction in its catalytic efficiency when compared with wild type AcpS, accounting for the E. coli MP4 strain phenotype. It is shown that a conditional acpS mutant accumulates apoACP in vivo under nonpermissive conditions in a manner similar to the E. coli MP4 strain. In addition, it is demonstrated that the gene product, YhhU, of a previously identified E. coli open reading frame can completely suppress the acpS conditional, lethal phenotype upon overexpression of the protein, suggesting that YhhU may be involved in an alternative pathway for phosphopantetheinyl transfer and holoACP synthesis in E. coli.  相似文献   

13.
Acyl carrier protein (ACP) is an essential cofactor in biosynthesis of fatty acids and many other reactions that require acyl transfer steps. We have determined the first crystal structures of an acylated form of ACP from E. coli, that of butyryl-ACP. Our analysis of the molecular surface of ACP reveals a plastic hydrophobic cavity in the vicinity of the phosphopantethylated Ser36 residue that is expanded and occupied by the butyryl and beta-mercaptoethylamine moieties of the acylated 4'-phosphopantetheine group in one of our crystal forms. In the other form, the cavity is contracted, and we propose that the protein has adopted the conformation after delivery of substrate into the active site of a partner enzyme.  相似文献   

14.
Pantothenate is the precursor of the essential cofactor coenzyme A (CoA). Pantothenate kinase (CoaA) catalyzes the first and regulatory step in the CoA biosynthetic pathway. The pantothenate analogs N-pentylpantothenamide and N-heptylpantothenamide possess antibiotic activity against Escherichia coli. Both compounds are substrates for E. coli CoaA and competitively inhibit the phosphorylation of pantothenate. The phosphorylated pantothenamides are further converted to CoA analogs, which were previously predicted to act as inhibitors of CoA-dependent enzymes. Here we show that the mechanism for the toxicity of the pantothenamides is due to the inhibition of fatty acid biosynthesis through the formation and accumulation of the inactive acyl carrier protein (ACP), which was easily observed as a faster migrating protein using conformationally sensitive gel electrophoresis. E. coli treated with the pantothenamides lost the ability to incorporate [1-(14)C]acetate to its membrane lipids, indicative of the inhibition of fatty acid synthesis. Cellular CoA was maintained at the level sufficient for bacterial protein synthesis. Electrospray ionization time-of-flight mass spectrometry confirmed that the inactive ACP was the product of the transfer of the inactive phosphopantothenamide moiety of the CoA analog to apo-ACP, forming the ACP analog that lacks the sulfhydryl group for the attachment of acyl chains for fatty acid synthesis. Inactive ACP accumulated in pantothenamide-treated cells because of the active hydrolysis of regular ACP and the slow turnover of the inactive prosthetic group. Thus, the pantothenamides are pro-antibiotics that inhibit fatty acid synthesis and bacterial growth because of the covalent modification of ACP.  相似文献   

15.
A heat-stable factor, required for de novo synthesis of fatty acids in the erythromycin-producing organism Streptomyces erythraeus, has been purified to homogeneity and identified as an acyl carrier protein (ACP). We conclude that, contrary to previous belief, fatty acid synthase in S. erythraeus more closely resembles the dissociable complex of E. coli than the tightly associated, multifunctional enzyme complex found in the related actinomycete Mycobacterium smegmatis.  相似文献   

16.
A cluster of Bacillus subtilis fatty acid synthetic genes was isolated by complementation of an Escherichia coli fabD mutant encoding a thermosensitive malonyl coenzyme A-acyl carrier protein transacylase. The B. subtilis genomic segment contains genes that encode three fatty acid synthetic proteins, malonyl coenzyme A-acyl carrier protein transacylase (fabD), 3-ketoacyl-acyl carrier protein reductase (fabG), and the N-terminal 14 amino acid residues of acyl carrier protein (acpP). Also present is a sequence that encodes a homolog of E. coli plsX, a gene that plays a poorly understood role in phospholipid synthesis. The B. subtilis plsX gene weakly complemented an E. coli plsX mutant. The order of genes in the cluster is plsX fabD fabG acpP, the same order found in E. coli, except that in E. coli the fabH gene lies between plsX and fabD. The absence of fabH in the B. subtilis cluster is consistent with the different fatty acid compositions of the two organisms. The amino acid sequence of B. subtilis acyl carrier protein was obtained by sequencing the purified protein, and the sequence obtained strongly resembled that of E. coli acyl carrier protein, except that most of the protein retained the initiating methionine residue. The B. subtilis fab cluster was mapped to the 135 to 145 degrees region of the chromosome.  相似文献   

17.
Expression of plant acyl carrier protein (ACP) in Escherichia coli at levels above that of constitutive E. coli ACP does not appear to substantially alter bacterial growth or fatty acid metabolism. The plant ACP expressed in E. coli contains pantetheine and approximately 50% is present in vivo as acyl-ACP. We have purified and characterized the recombinant spinach ACP-I. NH2-terminal amino acid sequencing indicated identity to authentic spinach ACP-I, and there was no evidence for terminal methionine or formylmethionine. Recombinant ACP-I was found to completely cross-react immunologically with polyclonal antibody raised to spinach ACP-I. Recombinant ACP-I was a poor substrate for E. coli fatty acid synthesis. In contrast, Brassica napus fatty acid synthetase gave similar reaction rates with both recombinant and E. coli ACP. Similarly, malonyl-coenzyme A:acyl carrier protein transacylase isolated from E. coli was only poorly able to utilize the recombinant ACP-I while the same enzyme from B. napus reacted equally well with either E. coli ACP or recombinant ACP-I. E. coli acyl-ACP synthetase showed a higher reaction rate for recombinant ACP-I than for E. coli ACP. Expression of spinach ACP-I in E. coli provides, for the first time, plant ACP in large quantities and should aid in both structural analysis of this protein and in investigations of the many ACP-dependent reactions of plant lipid metabolism.  相似文献   

18.
The key regulatory step in CoA biosynthesis in bacteria and mammals is pantothenate kinase (CoaA), which governs the intracellular concentration of CoA through feedback regulation by CoA and its thioesters. CoaA from Staphylococcus aureus (SaCoaA) has a distinct primary sequence that is more similar to the mammalian pantothenate kinases than the prototypical bacterial CoaA of Escherichia coli. In contrast to all known pantothenate kinases, SaCoaA activity is not feedback-regulated by CoA or CoA thioesters. Metabolic labeling of S. aureus confirms that CoA levels are not controlled by CoaA or at steps downstream from CoaA. The pantothenic acid antimetabolite N-heptylpantothenamide (N7-Pan) possesses potent antimicrobial activity against S. aureus and has multiple cellular targets. N7-Pan is a substrate for SaCoaA and is converted to the inactive butyldethia-CoA analog by the downstream pathway enzymes. The analog is also incorporated into acyl carrier protein and D-alanyl carrier protein, the prosthetic groups of which are derived from CoA. The inactivation of acyl carrier protein and the cessation of fatty acid synthesis are the most critical causes of growth inhibition by N7-Pan because the toxicity of the drug is ameliorated by supplementing the growth medium with fatty acids. The absence of feedback regulation at the pantothenate kinase step allows the accumulation of high concentrations of intracellular CoA, consistent with the physiology of S. aureus, which lacks glutathione and relies on the CoA/CoA disulfide reductase redox system for protection from oxidative damage.  相似文献   

19.
The purpose of this research was to develop new strains of Escherichia coli with improved fatty acid biosynthesis. β-Ketoacyl acyl carrier protein synthase III (fabH) catalyzes the first step in the synthesis of fatty acids in parallel with acetyl-CoA carboxylase (accABC) and malonyl-CoA: acyl carrier protein transacylase (fabD) in Escherichia coli K-12 MG1655. The enzyme encoded by the fabH gene leads to an increase in the synthesis of short-chain-length fatty acids and a strong preference for acetyl-CoA, as it produces only straight chain fatty acids (SCFAs). It also seems to play a role in determining the type and composition of fatty acids produced. In this study, metabolically engineered strains of E. coli K-12 MG1655 containing fabH or accA::accBC::fabD or accA::accBC:: fabD::fabH gene-inserted expression vector (pTrc99A) were constructed. To observe the effects of overexpression, the production of malonic acid, a pathway intermediate, and fatty acids was analyzed. The resulting recombinant strains produced total lipids up to approximately 1.2 ~ 1.6 fold higher than that of wild-type E. coli. The production of hexadecanoic acid was especially enhanced up to approximately 4.8 fold in E. coli SGJS13 as compared to E. coli SGJS11.  相似文献   

20.
Curtobacterium pusillum contains 11-cyclohexylundecanoic acid as a major component of cellular fatty acids. A trace amount of 13-cyclohexyltridecanoic acid is also present. Fatty acids other than omega-cyclohexyl fatty acids present are 13-methyltetradecanoic, 12-methyltetradecanoic, n-pentadecanoic, 14-methylpentadecanoic, 13-methylpentadecanoic, n-hexadecanoic, 15-methylhexadecanoic, 14-methylhexadecanoic, and n-heptadecanoic acids. The fatty acid synthetase system of this bacterium was studied. Various 14C-labeled precursors were added to the growth medium and the incorporation of radioactivity into cellular fatty acids was analyzed. Sodium [14C]acetate and [14C]glucose were incorporated into almost all species of cellular fatty acids, the incorporation into 11-cyclohexylundecanoic acid being predominant. [14C]Isoleucine was incorporated into 12-methyltetradecanoic and 14-methylhexadecanoic acids: [14C]leucine into 13-methyltetradecanoic and 15-methylhexadecanoic acids; and [14C]valine into 14-methylpentadecanoic acid. [14C]-Shikimic acid was incorporated almost exclusively into omega-cyclohexyl fatty acids. The fatty acid synthetase activity of the crude enzyme preparation of C. pusillum was reconstituted on the addition of acyl carrier protein. This synthetase system required NADPH and preferentially utilized cyclohexanecarbonyl-CoA as a primer. The system was also able to use branched- and straight-chain acyl-CoAs with 4 to 6 carbon atoms effectively as primers but was unable to use acetyl-CoA. However, if acetyl acyl carrier protein was used as the priming substrate, the system produced straight-chain fatty acids. The results imply that the specificity of the initial acyl-CoA:acyl carrier protein acyltransferase dictates the structure of fatty acids synthesized and that the enzymes catalyzing the subsequent chain-elongation reactions do not have the same specificity restriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号