首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The involvement of xanthine oxidase (XO) in some reactive oxygen species (ROS) -mediated diseases has been proposed as a result of the generation of O*- and H2O2 during hypoxanthine and xanthine oxidation. In this study, it was shown that purified rat liver XO and xanthine dehydrogenase (XD) catalyse the NADH oxidation, generating O*- and inducing the peroxidation of liposomes, in a NADH and enzyme concentration-dependent manner. Comparatively to equimolar concentrations of xanthine, a higher peroxidation extent is observed in the presence of NADH. In addition, the peroxidation extent induced by XD is higher than that observed with XO. The in vivo-predominant dehydrogenase is, therefore, intrinsically efficient at generating ROS, without requiring the conversion to XO. Our results suggest that, in those pathological conditions where an increase on NADH concentration occurs, the NADH oxidation catalysed by XD may constitute an important pathway for ROS-mediated tissue injuries.  相似文献   

2.
It has been reported that angiotensin II is specifically required for hypoxic vasoconstriction in rat lungs perfused with physiological salt solution. However, studies with other preparations indicate that angiotensin II does not play a necessary role in the mechanism of hypoxic vasoconstriction. In an attempt to resolve this disagreement I investigated in salt solution-perfused rat lungs whether vasoactive agents other than angiotensin II would induce hypoxic vasoconstriction, and, if so, whether the effect was due to selective action on the hypoxic mechanism or to a nonspecific increase in vascular reactivity. The results showed the development of hypoxic pressor responses after addition to perfusate of plasma, angiotensin II, KCl, vanadate, 4-aminopyridine, or norepinephrine plus propranolol. In contrast, addition of saline (control), ouabain, or tetraethylammonium chloride did not induce hypoxic vasoconstriction. Saralasin inhibited the effect of angiotensin II, but not that of plasma. Induction of responsiveness to hypoxia was associated with an increase in normoxic perfusion pressure and with potentiation of pressor responses to KCl. These results suggest that angiotensin II does not play a unique, integral role in the hypoxic mechanism, but instead is only one of many substances that will induce hypoxic pressor reactivity by reversing the vascular hyporeactivity of salt solution-perfused rat lungs.  相似文献   

3.
This study evaluated the changes in the biomechanical properties of endothelial cells (ECs) induced by neutrophil adhesion and the roles of ICAM-1 and reactive oxygen species (ROS) in modulating these changes. Neutrophil adherence to 24-h TNF-alpha-activated pulmonary microvascular ECs induced an increase in the apparent stiffness of ECs within 2 min, measured with magnetic twisting cytometry. An anti-ICAM-1 Ab blocked the EC stiffening response without inhibiting neutrophil adherence. Moreover, cross-linking ICAM-1 mimicked the stiffening response induced by neutrophils. The neutrophil-induced increase in the apparent stiffness of ECs was inhibited with 1% DMSO (a hydroxyl radical scavenger), allopurinol (a xanthine oxidase inhibitor), or deferoxamine (an iron chelator), suggesting that ROS may be involved in mediating the EC stiffening response. The cellular sources of ROS were determined by measuring the oxidation of dichlorofluorescein. Neutrophil adherence to TNF-alpha-activated ECs induced ROS production only in ECs, and not in neutrophils. This ROS production in ECs was completely prevented by the anti-ICAM-1 Ab and partially inhibited by allopurinol. These results suggest that ICAM-1-mediated signaling events during neutrophil adherence may activate xanthine oxidase, which in turn mediates the ROS production in ECs that leads to stiffening. ROS generated in ECs on neutrophil adherence appear to mediate cytoskeletal remodeling, which may modulate subsequent inflammatory responses.  相似文献   

4.
Microvessel segments were isolated from rat brain and used for studies of hypoxanthine transport and metabolism. Compared to an homogenate of cerebral cortex, the isolated microvessels were 3.7-fold enriched in xanthine oxidase. Incubation of the isolated microvessels with labeled hypoxanthine resulted in its rapid uptake followed by the slower accumulation of hypoxanthine metabolites including xanthine and uric acid. The intracellular accumulation of these metabolites was inhibited by the xanthine oxidase inhibitor allopurinol. Hypoxanthine transport into isolated capillaries was inhibited by adenine but not by representative pyrimidines or nucleosides. Similar results were obtained when blood to brain transport of hypoxanthine in vivo was measured using the intracarotid bolus injection technique. Thus, hypoxanthine is transported into brain capillaries by a transport system shared with adenine. Once inside the cell, hypoxanthine can be metabolized to xanthine and uric acid by xanthine oxidase. Since this reaction leads to the release of oxygen radicals, it is suggested that brain capillaries may be susceptible to free radical mediated damage. This would be most likely to occur in conditions where the brain hypoxanthine concentration is increased as following ischemia.  相似文献   

5.
The role of endothelium-derived hyperpolarizing factor (EDHF) in regulating the pulmonary circulation and the participation of cytochrome P-450 (CYP450) activity and gap junction intercellular communication in EDHF-mediated pulmonary vasodilation are unclear. We tested whether tonic EDHF activity regulated pulmonary vascular tone and examined the mechanism of EDHF-mediated pulmonary vasodilation induced by thapsigargin in salt solution-perfused normotensive and hypoxia-induced hypertensive rat lungs. After blockade of both cyclooxygenase and nitric oxide synthase, inhibition of EDHF with charybdotoxin plus apamin did not affect either normotensive or hypertensive vascular tone or acute hypoxic vasoconstriction but abolished thapsigargin vasodilation in both groups of lungs. The CYP450 inhibitors 7-ethoxyresorufin and sulfaphenazole and the gap junction inhibitor palmitoleic acid, but not 18alpha-glycyrrhetinic acid, inhibited thapsigargin vasodilation in normotensive lungs. None of these agents inhibited the vasodilation in hypertensive lungs. Thus tonic EDHF activity does not regulate either normotensive or hypertensive pulmonary vascular tone or acute hypoxic vasoconstriction. Whereas thapsigargin-induced EDHF-mediated vasodilation in normotensive rat lungs involves CYP450 activity and might act through gap junctions, the mechanism of vasodilation is apparently different in hypertensive lungs.  相似文献   

6.
The effect of reactive oxygen/nitrogen species (ROS/RNS)(hydrogen peroxide -- H(2)O(2), superoxide anion radical O(2)*- and hydroxyl radical *OH -- the reaction products of hypoxanthine/xanthine oxidase system), nitric oxide (NO* from sodium nitroprusside -- SNP), and peroxynitrite (ONOO(-) from 3-morpholinosydnonimine -- SIN-1) on insulin mitogenic effect was studied in L6 muscle cells after one day pretreatment with/or without antioxidants. ROS/RNS inhibited insulin-induced mitogenicity (DNA synthesis). Insulin (0.1 microM), however, markedly improved mitogenicity in the muscle cells treated with increased concentrations (0.1, 0.5, 1 mM) of donors of H(2)O(2), O(2)*-, *OH, ONOO(-) and NO*. Cell viability assessed by morphological criteria was also monitored. Massive apoptosis was induced by 1 mM of donors of H(2)O(2) and ONOO(-), while NO* additionally induced necrotic cell death. Taken together, these results have shown that ROS/RNS provide a good explanation for the developing resistance to the growth promoting activity of insulin in myoblasts under conditions of oxidative or nitrosative stress. Cell viability showed that neither donor induced cell death when given below 0.5 mM. In order to confirm the deleterious effects of ROS/RNS prior to the subsequent treatment with ROS/RNS plus insulin one day pretreatment with selected antioxidants (sodium ascorbate - ASC (0.01, 0.1, 1 mM), or N-acetylcysteine - NAC (0.1, 1, 10 mM) was carried out. Surprisingly, at a low dose (micromolar) antioxidants did not abrogate and even worsened the concentration-dependent effects of ROS/RNS. In contrast, pretreatment with millimolar dose of ASC or NAC maintained an elevated mitogenicity in response to insulin irrespective of the ROS/RNS donor type used.  相似文献   

7.
Obesity is related to vascular dysfunction through inflammation and oxidative stress and it has been identified as a risk factor for chronic renal disease. In the present study, we assessed the specific relationships among reactive oxygen species (ROS), cyclooxygenase 2 (COX-2), and endothelial dysfunction in renal interlobar arteries from a genetic model of obesity/insulin resistance, the obese Zucker rats (OZR). Relaxations to acetylcholine (ACh) were significantly reduced in renal arteries from OZR compared to their counterpart, the lean Zucker rat (LZR), suggesting endothelial dysfunction. Blockade of COX with indomethacin and with the selective blocker of COX-2 restored the relaxations to ACh in obese rats. Selective blockade of the TXA2/PGH2 (TP) receptor enhanced ACh relaxations only in OZR, while inhibition of the prostacyclin (PGI2) receptor (IP) enhanced basal tone and inhibited ACh vasodilator responses only in LZR. Basal production of superoxide was increased in arteries of OZR and involved NADPH and xanthine oxidase activation and NOS uncoupling. Under conditions of NOS blockade, ACh induced vasoconstriction and increased ROS generation that were augmented in arteries from OZR and blunted by COX-2 inhibition and by the ROS scavenger tempol. Hydrogen peroxide (H2O2) evoked both endothelium- and vascular smooth muscle (VSM)-dependent contractions, as well as ROS generation that was reduced by COX-2 inhibition. In addition, COX-2 expression was enhanced in both VSM and endothelium of renal arteries from OZR. These results suggest that increased COX-2-dependent vasoconstriction contributes to renal endothelial dysfunction through enhanced (ROS) generation in obesity. COX-2 activity is in turn upregulated by ROS.  相似文献   

8.
At a concentration much lower than that usually employed for measuring cytosolic ionized Ca2+ concentrations, arsenazo III underwent a one-electron reduction by rat liver cytosolic fraction or a hypoxanthinexanthine oxidase system to produce an azo anion radical metabolite. NADH, NADPH, N1-methylnicotinamide, hypoxanthine, and xanthine, in that order, could serve as a source of reducing equivalents for the production of this free radical by the cytosolic fraction. The steady-state concentration of the azo anion radical and the arsenazo III-stimulated O2 consumption were enhanced by calcium and magnesium. Antipyrylazo III was ineffective in increasing O2 consumption by rat liver cytosolic fraction and gave a much weaker ESR signal of an azo anion radical with both the liver cytosolic fraction, in the presence of NADH, and the hypoxanthine-xanthine oxidase system.  相似文献   

9.
Impairment of lysosomal stability due to reactive oxygen species generated during the oxidation of hypoxanthine by xanthine oxidase was studied in rat liver lysosomes isolated in a discontinuous Nycodenz gradient. Production of O2.- and H2O2 during the hypoxanthine/xanthine oxidase reaction occurred for at least 5 min, while lysosomal damage, indicated by the release of N-acetyl-beta-glucosaminidase, occurred within 30 s, there being no further damage to these organelles thereafter. The extent of lysosomal enzyme release increased with increasing xanthine oxidase concentration. Superoxide dismutase and catalase did not prevent lysosomal damage during the hypoxanthine/xanthine oxidase reaction. Lysosomes reduced xanthine oxidase activity, as assessed in terms of O2 consumption, only slightly but substantially inhibited in a competitive manner the O2.- -mediated reduction of cytochrome c. This inhibition was almost completely reversed by potassium cyanide, thus pointing to the presence of a cyanide-sensitive superoxide dismutase in the lysosomal fraction. However, potassium cyanide did not affect the hypoxanthine/xanthine oxidase-mediated lysosomal damage, thus suggesting an inability of the lysosomal superoxide dismutase to protect the organelles. Negligible malondialdehyde formation was observed in the lysosomes either during the hypoxanthine/xanthine oxidase reaction or with different selective experimental approaches known to produce lipid peroxidation in other organelles such as microsomes and mitochondria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The molecular mechanisms underlying hypoxic pulmonary vasoconstriction (HPV) are not yet properly understood. Mitochondrial electron transport chain (ETC) and NADPH oxidase have been proposed as possible oxygen sensors, with derived reactive oxygen species (ROS) playing key roles in coupling the sensor(s) to the contractile machinery. We have recently reported that activation of neutral sphingomyelinase (nSMase) and protein kinase C ζ (PKCζ) participate in the signalling cascade of HPV. Herein, we studied the significance of nSMase in controlling ROS production rate in rat pulmonary artery (PA) smooth muscle cells and thereby HPV in rat PA. ROS production (analyzed by dichlorofluorescein and dihydroethidium fluorescence) was increased by hypoxia in endothelium-denuded PA segments and their inhibition prevented hypoxia-induced voltage-gated potassium channel (K(V) ) inhibition and pulmonary vasoconstriction. Consistently, H(2) O(2) , or its analogue t-BHP, decreased K(V) currents and induced a contractile response, mimicking the effects of hypoxia. Inhibitors of mitochondrial ETC (rotenone) and NADPH oxidase (apocynin) prevented hypoxia-induced ROS production, K(V) channel inhibition and vasoconstriction. Hypoxia induced p47(phox) phosphorylation and its interaction with caveolin-1. Inhibition of nSMase (GW4869) or PKCζ prevented p47(phox) phosphorylation and ROS production. The increase in ceramide induced by hypoxia (analyzed by immunocytochemistry) was inhibited by rotenone. Exogenous ceramide increased ROS production in a PKCζ sensitive manner. We propose an integrated signalling pathway for HPV which includes nSMase-PKCζ-NADPH oxidase as a necessary step required for ROS production and vasoconstriction.  相似文献   

11.
We studied the effects of perfusate pH on pulmonary vascular tone, reactivity, and thromboxane and prostacyclin synthesis in isolated buffer-perfused rabbit lungs. Extracellular acidosis did not affect base-line vascular tone, but alkalosis had a biphasic effect. Increasing the perfusate pH from 7.40 to 7.65 caused vasodilation, whereas raising pH to 7.70-8.10 caused vasoconstriction. Removing calcium (Ca2+) from the perfusate completely prevented the vasoconstriction caused by alkalosis. Perfusate pH strikingly affected pulmonary vascular reactivity. Acidosis inhibited the vasoconstriction caused by thromboxane and potassium chloride (KCl) but did not affect the response to angiotensin II. Alkalosis, in contrast, augmented the vasoconstriction caused by thromboxane and angiotensin II but reduced the vasoconstriction caused by KCl. Changes in pH also altered thromboxane and prostacyclin synthesis after the infusion of exogenous arachidonic acid (AA) or the endogenous release of AA by the lipid peroxide tert-butyl hydroperoxide.  相似文献   

12.
Alpha(1)-proteinase inhibitor (alpha(1)-PI) is a natural serine protease inhibitor. Although mainly thought to protect the airways from neutrophil elastase, alpha(1)-PI may also regulate the development of airway hyperresponsiveness (AHR), as indicated by our previous findings of an inverse relationship between lung alpha(1)-PI activity and the severity of antigen-induced AHR. Because allergic stimulation of the airways causes release of elastase, tissue kallikrein, and reactive oxygen species (ROS), all of which can reduce alpha(1)-PI activity and contribute to AHR, we hypothesized that administration of exogenous alpha(1)-PI should protect against pathophysiological airway responses caused by these agents. In untreated allergic sheep, airway challenge with elastase, xanthine/xanthine oxidase (which generates ROS), high-molecular-weight kininogen, the substrate for tissue kallikrein, and antigen resulted in bronchoconstriction. ROS and antigen also induced AHR to inhaled carbachol. Treatment with 10 mg of recombinant alpha(1)-PI (ralpha(1)-PI) blocked the bronchoconstriction caused by elastase, high-molecular-weight kininogen, and ROS, and the AHR induced by ROS and antigen. One milligram of ralpha(1)-PI was ineffective. These are the first in vivo data demonstrating the effects of ralpha(1)-PI. Our results are consistent with and extend findings obtained with human plasma-derived alpha(1)-PI and suggest that alpha(1)-PI may be important in the regulation of airway responsiveness.  相似文献   

13.
The rat hepatocyte catalyzed oxidation of 2',7'-dichlorofluorescin to form the fluorescent 2,7'-dichlorofluorescein was used to measure endogenous and xenobiotic-induced reactive oxygen species (ROS) formation by intact isolated rat hepatocytes. Various oxidase substrates and inhibitors were then used to identify the intracellular oxidases responsible. Endogenous ROS formation was markedly increased in catalase-inhibited or GSH-depleted hepatocytes, and was inhibited by ROS scavengers or desferoxamine. Endogenous ROS formation was also inhibited by cytochrome P450 inhibitors, but was not affected by oxypurinol, a xanthine oxidase inhibitor, or phenelzine, a monoamine oxidase inhibitor. Mitochondrial respiratory chain inhibitors or hypoxia, on the other hand, markedly increased ROS formation before cytotoxicity ensued. Furthermore, uncouplers of oxidative phosphorylation inhibited endogenous ROS formation. This suggests endogenous ROS formation can largely be attributed to oxygen reduction by reduced mitochondrial electron transport components and reduced cytochrome P450 isozymes. Addition of monoamine oxidase substrates increased antimycin A-resistant respiration and ROS formation before cytotoxicity ensued. Addition of peroxisomal substrates also increased antimycin A-resistant respiration but they were less effective at inducing ROS formation and were not cytotoxic. However, peroxisomal substrates readily induced ROS formation and were cytotoxic towards catalase-inhibited hepatocytes, which suggests that peroxisomal catalase removes endogenous H(2)O(2) formed in the peroxisomes. Hepatocyte catalyzed dichlorofluorescin oxidation induced by oxidase substrates, e.g., benzylamine, was correlated with the cytotoxicity induced in catalase-inhibited hepatocytes.  相似文献   

14.
《Free radical research》2013,47(1-5):69-78
The massive leakage of intracellular enzymes which occurs during reoxygenation of heart tissue after hypoxic or ischemic episodes has been suggested to result from the formation of oxygen radicals. One purported source of such radicals is the xanthine oxidase-mediated metabolism of hypoxanthine and xanthine. Xanthine oxidase (O form) has been suggested to be formed in vivo by limited proteolysis of xanthine dehydrogenase (D form) during the hypoxic period (Granger el ai. Gastroenterology 81, 22 (1981)). We measured the activities of xanthine oxidase in both fresh and isolated-perfused (Langendorff) rat heart tissue. Approximately 32% of the total xanthine oxidase was in the O form in fresh and isolated-perfused rat heart. This value was unchanged following 60min of hypoxia and 30 minutes of reoxygenation. The infusion of 250/JM allopurinol throughout the perfusion completely inhibited xanthine oxidase activity but had no effect on the massive release of lactate dehydrogenase (LDH) into the coronary effluent upon reoxygenation of heart tissue subjected to 30 or 60min of hypoxia. Protection from 30min of hypoxia was also not obtained when rats were pretreated for 48 h with allopurinol at a dose of 30mg/kg/day and perfused with allopurinol containing medium. Superoxide dismutase (50 units/ml), catalase (200 units/ml), or the antioxidant cyanidanol (100μM) also had no effect on LDH release upon reoxygenation after 60 min of hypoxia. Xanthine oxidase activity was detected in a preparation enriched in cardiac endothelial cells while no allupurinol-inhibitable activity could be measured in purified isolated cardiomyocytes. It is concluded that xanthine dehydrogenase is not converted to xanthine oxidase in hypoxic tissue of the isolated perfused rat heart, and that the release of intracellular enzymes upon reoxygenation in this experimental model is mediated by factors other than reactive oxygen generated by xanthine oxidase.  相似文献   

15.
Apoptosis is an important cell death system that deletes damaged and mutated cells, preventing the induction of cancer. We previously have reported that UV irradiation inhibited the apoptosis induced by serum starvation and cell detachment. This phenomenon is suitable for clarifying the relationship between cancer and the dysregulation of apoptosis by UV irradiation. Here, we have studied the factors responsible for this inhibition of apoptosis, focusing on reactive oxygen species (ROS) and DNA damage. Treatment with xanthine oxidase in the presence of hypoxanthine, which is known to produce superoxide anion (O2*-) and hydrogen peroxide (H2O2), inhibited the induction of apoptosis. The xanthine oxidase-induced anti-apoptotic effect was suppressed in the presence of an H2O2-eliminating enzyme, catalase, but not in the presence of an O2*--eliminating enzyme, superoxide dismutase. Treatment with H2O2 itself significantly inhibited the induction of apoptosis. Furthermore, the effect of the inhibition of cell death by UVB irradiation and by H2O2 treatment decreased in H2O2-resistant cells. Although both UVB and H2O2 are known to induce DNA damage, other DNA damaging agents, like gamma-irradiation and treatment with cisplatin and bleomycin, showed no inhibition of apoptosis. These findings suggested that H2O2 was essential to the inhibition of apoptosis, in which DNA damage had no role.  相似文献   

16.
Abstract: Enhanced production of superoxide anion (O2) is considered to play a pivotal role in the pathogenesis of CNS neurons. Here, we report that O2 generated by xanthine (XA) + xanthine oxidase (XO) triggered cell death associated with nuclear condensation and DNA fragmentation in cerebellar granule neuron. XA + XO induced significant increases in amounts of intracellular reactive oxygen species (ROS) before initiating loss of cell viability, as determined by measurement of 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate, di(acetoxymethyl ester) (C-DCDHF-DA) for O2 and other ROS and hydroethidine (HEt) specifically for O2 by using fluorescence microscopy and flow cytometry. Catalase, but not superoxide dismutase (SOD), significantly protected granule neurons from the XA + XO-induced cell death. Catalase effectively reduced C-DCDHF-DA but not HEt fluorescence, whereas SOD reduced HEt but not C-DCDHF-DA fluorescence, indicating that HEt and C-DCDHF-DA fluorescence correlated with O2 and hydrogen peroxide, respectively. The NMDA antagonist MK-801 prevented the death. XA + XO induced an increase in l -glutamate release from cerebellar granule neurons. These results indicate that elevation of O2 induces cell death associated with increasing ROS production in cerebellar granule neurons and that XA + XO enhanced release of l -glutamate.  相似文献   

17.
Zhou YD  Fang XF  Cui ZJ 《Cell calcium》2009,45(1):18-28
UVA is a major bio-active component in solar irradiation, and is shown to have immunomodulatory and anti-inflammatory effects. The detailed molecular mechanism of UVA action in regard to calcium signaling in mast cells, however, is not fully understood. In this study, it was found that UVA induced ROS formation and cytosolic calcium oscillations in individual rat mast cells. Exogenously added H2O2 and hypoxanthine/xanthine oxidase (HX/XOD) mimicked UVA effects on cytosolic calcium increases. Regular calcium oscillation induced by UVA irradiation was inhibited completely by the phosphatidylinositol-specific phospholipase C inhibitor U73122, but U73343 was without effect. Tetrandrine, a calcium entry blocker, or calcium-free buffer abolished UVA-induced calcium oscillations. L-type calcium channel blocker nifedipine and stores-operated calcium channel blocker SK&F96365 had no such inhibitory effect. ROS induction by UVA was abolished after pre-incubation with anti-oxidant NAC or with NAD(P)H oxidase inhibitor DPI; such treatment also made UVA-induced calcium oscillation to disappear. UVA irradiation did not increase mast cell diameter, but it made mast cell structure more granular. Spectral confocal imaging revealed that the emission spectrum of the endogenous fluorophore in single mast cell contained a sizable peak which corresponded to that of NAD(P)H. Taken together, these data suggest that UVA in rat mast cells could activate NAD(P)H oxidase, to produce ROS, which in turn activates phospholipase C signaling, to trigger regular cytosolic calcium oscillation.  相似文献   

18.
Reactive oxygen species (ROS) contribute to neutrophil activation and the development of acute inflammatory processes in which neutrophils play a central role. However, there is only limited information concerning the mechanisms through which extracellular ROS, and particularly cell membrane-impermeable species, such as superoxide, enhance the proinflammatory properties of neutrophils. To address this issue, neutrophils were exposed to superoxide generating combinations of xanthine oxidase and hypoxanthine or lumazine. Extracellular superoxide generation induced nuclear translocation of nuclear factor-kappaB (NF-kappaB) and increased neutrophil production of the NF-kappaB-dependent cytokines tumor necrosis factor-alpha (TNF-alpha) and macrophage inhibitory protein-2 (MIP-2). In contrast, there were no changes in TNF-alpha or MIP-2 expression when neutrophils lacking Toll-like receptor-4 (TLR4) were exposed to extracellular superoxide. Immunoprecipitation, confocal microscopy, and fluorescence resonance energy transfer (FRET) studies demonstrated association between TLR4 and xanthine oxidase. Exposure of neutrophils to heparin attenuated binding of xanthine oxidase to the cell surface as well as interactions with TLR4. Heparin also decreased xanthine oxidase-induced nuclear translocation of NF-kappaB as well as production of proinflammatory cytokines. These results demonstrate that extracellular superoxide has proinflammatory effects on neutrophils, predominantly acting through an TLR4-dependent mechanism that enhances nuclear translocation of NF-kappaB and increases expression of NF-kappaB-dependent cytokines.  相似文献   

19.
Ionizing radiation has been implicated in the development of significant cardiovascular complications. Since radiation exposure is associated with space exploration, astronauts are potentially at increased risk of accelerated cardiovascular disease. This study investigated the effect of high atomic number, high-energy (HZE) iron-ion radiation on vascular and endothelial function as a model of space radiation. Rats were exposed to a single whole-body dose of iron-ion radiation at doses of 0, 0.5 or 1 Gy. In vivo aortic stiffness and ex vivo aortic tension responses were measured 6 and 8 months after exposure as indicators of chronic vascular injury. Rats exposed to 1 Gy iron ions demonstrated significantly increased aortic stiffness, as measured by pulse wave velocity. Aortic rings from irradiated rats exhibited impaired endothelial-dependent relaxation consistent with endothelial dysfunction. Acute xanthine oxidase (XO) inhibition or reactive oxygen species (ROS) scavenging restored endothelial-dependent responses to normal. In addition, XO activity was significantly elevated in rat aorta 4 months after whole-body irradiation. Furthermore, XO inhibition, initiated immediately after radiation exposure and continued until euthanasia, completely inhibited radiation-dependent XO activation. ROS production was elevated after 1 Gy irradiation while production of nitric oxide (NO) was significantly impaired. XO inhibition restored NO and ROS production. Finally, dietary XO inhibition preserved normal endothelial function and vascular stiffness after radiation exposure. These results demonstrate that radiation induced XO-dependent ROS production and nitroso-redox imbalance, leading to chronic vascular dysfunction. As a result, XO is a potential target for radioprotection. Enhancing the understanding of vascular radiation injury could lead to the development of effective methods to ameliorate radiation-induced vascular damage.  相似文献   

20.
The authors have compared the ability of two non-SH-containing angiotensin converting enzyme (ACE) inhibitors (enalaprilat and lisinopril) with an -SH containing ACE inhibitor (captopril) to scavenge the hydroxyl radical (OH). All three compounds were able to scavenge -OH radicals generated in free solution at approximately diffusion-controled rates (1010 M-1s-1) as established by the deoxyribose assay in the presence of EDTA. The compounds also inhibited deoxyribose degradation in reaction mixtures which did not contain EDTA but not so effectively. This later finding also suggests that they have some degree of metal-binding capability. Chemiluminescence assays of oxidation of hypoxanthine by xanthine oxidase in the presence of luminol, confirm that the three ACE inhibitors are oxygen free radical scavengers. Our results indicate that the presence of a sulphydryl group in the chemical structure of ACE inhibitors is not relevant for their oxygen free radical scavenging ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号