首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although small GTP-binding proteins of the Rho family have been implicated in signaling to the actin cytoskeleton, the exact nature of the linkage has remained obscure. We describe a novel mechanism that links one Rho family member, Cdc42, to actin polymerization. N-WASP, a ubiquitously expressed Cdc42-interacting protein, is required for Cdc42-stimulated actin polymerization in Xenopus egg extracts. The C terminus of N-WASP binds to the Arp2/3 complex and dramatically stimulates its ability to nucleate actin polymerization. Although full-length N-WASP is less effective, its activity can be greatly enhanced by Cdc42 and phosphatidylinositol (4,5) bisphosphate. Therefore, N-WASP and the Arp2/3 complex comprise a core mechanism that directly connects signal transduction pathways to the stimulation of actin polymerization.  相似文献   

2.
Association of Cdc42/N-WASP/Arp2/3 signaling pathway with Golgi membranes   总被引:1,自引:0,他引:1  
Recent findings indicate that Cdc42 regulates Golgi-to-ER (endoplasmic reticulum) protein transport through N-WASP and Arp2/3 (Luna et al. 2002, Mol. Biol. Cell, 13:866-879). To analyse the components of the Cdc42-governed signaling pathway in the secretory pathway, we localized Cdc42, N-WASP and Arp2/3 in the Golgi complex by cryoimmunoelectron microscopy. Cdc42 is found throughout the Golgi stack, particularly in cis/middle cisternae, whereas N-WASP and Arp3 (a component of the Arp2/3 complex) are restricted to cis cisternae. Arp3 also colocalized in peri-Golgi tubulovesicular structures with either KDEL receptor or GM130. Even though Arp3 is not found in TGN46-positive cisternal elements, a small fraction of Arp3-labeled tubulo-vesicular elements showed TGN46 labeling. Active Cdc42 (GTP-bound form) induced relocation of N-WASP and Arp3 to the lateral rims of Golgi cisternae. These results show that the actin nucleation and polymerization signaling pathway governed by Cdc42/N-WASP/Arp operates in the Golgi complex of mammalian cells, further implicating actin dynamics in Golgi-associated membrane trafficking.  相似文献   

3.
We identified a novel adaptor protein that contains a Src homology (SH)3 domain, SH3 binding proline-rich sequences, and a leucine zipper-like motif and termed this protein WASP interacting SH3 protein (WISH). WISH is expressed predominantly in neural tissues and testis. It bound Ash/Grb2 through its proline-rich regions and neural Wiskott-Aldrich syndrome protein (N-WASP) through its SH3 domain. WISH strongly enhanced N-WASP-induced Arp2/3 complex activation independent of Cdc42 in vitro, resulting in rapid actin polymerization. Furthermore, coexpression of WISH and N-WASP induced marked formation of microspikes in Cos7 cells, even in the absence of stimuli. An N-WASP mutant (H208D) that cannot bind Cdc42 still induced microspike formation when coexpressed with WISH. We also examined the contribution of WISH to a rapid actin polymerization induced by brain extract in vitro. Arp2/3 complex was essential for brain extract-induced rapid actin polymerization. Addition of WISH to extracts increased actin polymerization as Cdc42 did. However, WISH unexpectedly could activate actin polymerization even in N-WASP-depleted extracts. These findings suggest that WISH activates Arp2/3 complex through N-WASP-dependent and -independent pathways without Cdc42, resulting in the rapid actin polymerization required for microspike formation.  相似文献   

4.
Changes in the number, size, and shape of dendritic spines are associated with synaptic plasticity, which underlies cognitive functions such as learning and memory. This plasticity is attributed to reorganization of actin, but the molecular signals that regulate this process are poorly understood. In this study, we show neural Wiskott-Aldrich syndrome protein (N-WASP) regulates the formation of dendritic spines and synapses in hippocampal neurons. N-WASP localized to spines and active, functional synapses as shown by loading with FM4-64 dye. Knock down of endogenous N-WASP expression by RNA interference or inhibition of its activity by treatment with a specific inhibitor, wiskostatin, caused a significant decrease in the number of spines and excitatory synapses. Deletion of the C-terminal VCA region of N-WASP, which binds and activates the actin-related protein 2/3 (Arp2/3) complex, dramatically decreased the number of spines and synapses, suggesting activation of the Arp2/3 complex is critical for spine and synapse formation. Consistent with this, Arp3, like N-WASP, was enriched in spines and excitatory synapses and knock down of Arp3 expression impaired spine and synapse formation. A similar defect in spine and synapse formation was observed when expression of an N-WASP activator, Cdc42, was knocked down. Thus, activation of N-WASP and, subsequently, the Arp2/3 complex appears to be an important molecular signal for regulating spines and synapses. Arp2/3-mediated branching of actin could be a mechanism by which dendritic spine heads enlarge and subsequently mature. Collectively, our results point to a critical role for N-WASP and the Arp2/3 complex in spine and synapse formation.  相似文献   

5.
Wiskott-Aldrich syndrome protein (WASP) and N-WASP have emerged as key proteins connecting signalling cascades to actin polymerization. Here we show that the amino-terminal WH1 domain, and not the polyproline-rich region, of N-WASP is responsible for its recruitment to sites of actin polymerization during Cdc42-independent, actin-based motility of vaccinia virus. Recruitment of N-WASP to vaccinia is mediated by WASP-interacting protein (WIP), whereas in Shigella WIP is recruited by N-WASP. Our observations show that vaccinia and Shigella activate the Arp2/3 complex to achieve actin-based motility, by mimicking either the SH2/SH3-containing adaptor or Cdc42 signalling pathways to recruit the N-WASP-WIP complex. We propose that the N-WASP-WIP complex has a pivotal function in integrating signalling cascades that lead to actin polymerization.  相似文献   

6.
Ho HY  Rohatgi R  Lebensohn AM  Le Ma  Li J  Gygi SP  Kirschner MW 《Cell》2004,118(2):203-216
An important signaling pathway to the actin cytoskeleton links the Rho family GTPase Cdc42 to the actin-nucleating Arp2/3 complex through N-WASP. Nevertheless, these previously identified components are not sufficient to mediate Cdc42-induced actin polymerization in a physiological context. In this paper, we describe the biochemical purification of Toca-1 (transducer of Cdc42-dependent actin assembly) as an essential component of the Cdc42 pathway. Toca-1 binds both N-WASP and Cdc42 and is a member of the evolutionarily conserved PCH protein family. Toca-1 promotes actin nucleation by activating the N-WASP-WIP/CR16 complex, the predominant form of N-WASP in cells. Thus, the cooperative actions of two distinct Cdc42 effectors, the N-WASP-WIP complex and Toca-1, are required for Cdc42-induced actin assembly. These findings represent a significantly revised view of Cdc42-signaling and shed light on the pathogenesis of Wiskott-Aldrich syndrome.  相似文献   

7.
Coordinated functions of the actin cytoskeleton and microtubules, which need to be carefully controlled in time and space, are required for the drastic alterations of neuronal morphology during neuromorphogenesis and neuronal network formation. A key process in neuronal actin dynamics is filament formation by actin nucleators, such as the Arp2/3 complex, formins and the brain-enriched, novel WH2 domain-based nucleators Spire and cordon-bleu (Cobl). We here discuss in detail the currently available data on the roles of these actin nucleators during neuromorphogenesis and highlight how their required control at the plasma membrane may be brought about. The Arp2/3 complex was found to be especially important for proper growth cone translocation and axon development. The underlying molecular mechanisms for Arp2/3 complex activation at the neuronal plasma membrane include a recruitment and an activation of N-WASP by lipid- and F-actin-binding adaptor proteins, Cdc42 and phosphatidyl-inositol-(4,5)-bisphosphate (PIP(2)). Together, these components upstream of N-WASP and the Arp2/3 complex ensure fine-control of N-WASP-mediated Arp2/3 complex activation and control distinct functions during axon development. They are counteracted by Arp2/3 complex inhibitors, such as PICK, which likewise play an important role in neuromorphogenesis. In contrast to the crucial role of the Arp2/3 complex in proper axon development, dendrite formation and dendritic arborization was revealed to critically involve the newly identified actin nucleator Cobl. Cobl is a brain-enriched protein and uses three Wiskott-Aldrich syndrome protein homology 2 (WH2) domains for actin binding and for promoting the formation of non-bundled, unbranched filaments. Thus, cells use different actin nucleators to steer the complex remodeling processes underlying cell morphogenesis, the formation of cellular networks and the development of complex body plans.  相似文献   

8.
The Wiskott-Aldrich syndrome protein (WASP) and neural WASP (N-WASP) are key players in regulating actin cytoskeleton via the Arp2/3 complex. It has been widely reported that the WASP proteins are activated by Rho family small GTPase Cdc42 and that Rac1 acts through SCAR/WAVE proteins. However, a systematic study of the specificity of different GTPases for different Arp2/3 activators has not been conducted. In this study, we have expressed, purified, and characterized completely soluble, highly active, and autoinhibited full-length human WASP and N-WASP from mammalian cells. We show a novel N-WASP activation by Rho family small GTPase Rac1. This GTPase exclusively stimulates N-WASP and has no effects on WASP. Rac1 is a significantly more potent N-WASP activator than Cdc42. In contrast, Cdc42 is a more effective activator of WASP than N-WASP. Lipid vesicles containing PIP2 significantly improve actin nucleation by the Arp2/3 complex and N-WASP in the presence of Rac1 or Cdc42. PIP2 vesicles have no effect on WASP activity alone. Moreover, the inhibition of WASP-stimulated actin nucleation in the presence of Cdc42 and PIP2 vesicles has been observed. We found that adaptor proteins Nck1 or Nck2 are the most potent WASP and N-WASP activators with distinct effects on the WASP family members. Our in vitro data demonstrates differential regulation of full-length WASP and N-WASP by cellular activators that highlights fundamental differences of response at the protein-protein level.  相似文献   

9.
IQGAP1 is a conserved modular protein overexpressed in cancer and involved in organizing actin and microtubules in motile processes such as adhesion, migration, and cytokinesis. A variety of proteins have been shown to interact with IQGAP1, including the small G proteins Rac1 and Cdc42, actin, calmodulin, beta-catenin, the microtubule plus end-binding proteins CLIP170 (cytoplasmic linker protein) and adenomatous polyposis coli. However, the molecular mechanism by which IQGAP1 controls actin dynamics in cell motility is not understood. Quantitative co-localization analysis and down-regulation of IQGAP1 revealed that IQGAP1 controls the co-localization of N-WASP with the Arp2/3 complex in lamellipodia. Co-immunoprecipitation supports an in vivo link between IQGAP1 and N-WASP. Pull-down experiments and kinetic assays of branched actin polymerization with N-WASP and Arp2/3 complex demonstrated that the C-terminal half of IQGAP1 activates N-WASP by interacting with its BR-CRIB domain in a Cdc42-like manner, whereas the N-terminal half of IQGAP1 antagonizes this activation by association with a C-terminal region of IQGAP1. We propose that signal-induced relief of the autoinhibited fold of IQGAP1 allows activation of N-WASP to stimulate Arp2/3-dependent actin assembly.  相似文献   

10.
Induction of filopodia is dependent on activation of the small GTPase Cdc42 and on neural Wiskott-Aldrich-syndrome protein (N-WASP). Here we show that WASP-interacting protein (WIP) interacts directly with N-WASP and actin. WIP retards N-WASP/Cdc42-activated actin polymerization mediated by the Arp2/3 complex, and stabilizes actin filaments. Microinjection of WIP into NIH 3T3 fibroblasts induces filopodia; this is inhibited by microinjection of anti-N-WASP antibody. Microinjection of anti-WIP antibody inhibits induction of filopodia by bradykinin, by an active Cdc42 mutant (Cdc42(V12)) and by N-WASP. Our results indicate that WIP and N-WASP may act as a functional unit in filopodium formation, which is consistent with their role in actin-tail formation in cells infected with vaccinia virus or Shigella.  相似文献   

11.
Neuronal Wiskott-Aldrich Syndrome protein (N-WASP) transmits signals from Cdc42 to the nucleation of actin filaments by Arp2/3 complex. Although full-length N-WASP is a weak activator of Arp2/3 complex, its activity can be enhanced by upstream regulators such as Cdc42 and PI(4,5)P(2). We dissected this activation reaction and found that the previously described physical interaction between the NH(2)-terminal domain and the COOH-terminal effector domain of N-WASP is a regulatory interaction because it can inhibit the actin nucleation activity of the effector domain by occluding the Arp2/3 binding site. This interaction between the NH(2)- and COOH termini must be intramolecular because in solution N-WASP is a monomer. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) influences the activity of N-WASP through a conserved basic sequence element located near the Cdc42 binding site rather than through the WASp homology domain 1. Like Cdc42, PI(4,5)P(2) reduces the affinity between the NH(2)- and COOH termini of the molecule. The use of a mutant N-WASP molecule lacking this basic stretch allowed us to delineate a signaling pathway in Xenopus extracts leading from PI(4, 5)P(2) to actin nucleation through Cdc42, N-WASP, and Arp2/3 complex. In this pathway, PI(4,5)P(2) serves two functions: first, as an activator of N-WASP; and second, as an indirect activator of Cdc42.  相似文献   

12.
Neural Wiskott-Aldrich syndrome protein (N-WASP) is an essential regulator of actin cytoskeleton formation via its association with the actin-related protein (Arp) 2/3 complex. It is believed that the C-terminal Arp2/3 complex-activating domain (verprolin homology, cofilin homology, and acidic (VCA) or C-terminal region of WASP family proteins domain) of N-WASP is usually kept masked (autoinhibition) but is opened upon cooperative binding of upstream regulators such as Cdc42 and phosphatidylinositol 4,5-bisphosphate (PIP2). However, the mechanisms of autoinhibition and association with Arp2/3 complex are still unclear. We focused on the acidic region of N-WASP because it is thought to interact with Arp2/3 complex and may be involved in autoinhibition. Partial deletion of acidic residues from the VCA portion alone greatly reduced actin polymerization activity, demonstrating that the acidic region contributes to Arp2/3 complex-mediated actin polymerization. Surprisingly, the same partial deletion of the acidic region in full-length N-WASP led to constitutive activity comparable with the activity seen with the VCA portion. Therefore, the acidic region in full-length N-WASP plays an indispensable role in the formation of the autoinhibited structure. This mutant contains WASP-homology (WH) 1 domain with weak affinity to the Arp2/3 complex, leading to activity in the absence of part of the acidic region. Furthermore, the actin comet formed by the DeltaWH1 mutant of N-WASP was much smaller than that of wild-type N-WASP. Partial deletion of acidic residues did not affect actin comet size, indicating the importance of the WH1 domain in actin structure formation. Collectively, the acidic region of N-WASP plays an essential role in Arp2/3 complex activation as well as in the formation of the autoinhibited structure, whereas the WH1 domain complements the activation of the Arp2/3 complex achieved through the VCA portion.  相似文献   

13.
Extended Fer-CIP4 homology (EFC)/FCH-BAR (F-BAR) domains generate and bind to tubular membrane structures of defined diameters that are involved in the formation and fission of endocytotic vesicles. Formin-binding protein 17 (FBP17) and Toca-1 contain EFC/F-BAR domains and bind to neural Wiskott-Aldrich syndrome protein (N-WASP), which links phosphatidylinositol (4,5)-bisphosphate (PIP(2)) and the Rho family GTPase Cdc42 to the Arp2/3 complex. The N-WASP-WASP-interacting protein (WIP) complex, a predominant form of N-WASP in cells, is known to be activated by Toca-1 and Cdc42. Here, we show that N-WASP-WIP complex-mediated actin polymerization is activated by phosphatidylserine-containing membranes depending on membrane curvature in the presence of Toca-1 or FBP17 and in the absence of Cdc42 and PIP(2). Cdc42 further promoted the activation of actin polymerization by N-WASP-WIP. Toca-1 or FBP17 recruited N-WASP-WIP to the membrane. Conserved acidic residues near the SH3 domain of Toca-1 and FBP17 positioned the N-WASP-WIP to be spatially close to the membrane for activation of actin polymerization. Therefore, curvature-dependent actin polymerization is stimulated by spatially appropriate interactions of EFC/F-BAR proteins and the N-WASP-WIP complex with the membrane.  相似文献   

14.
The Wiskott-Aldrich syndrome protein (WASP) and its relative neural WASP (N-WASP) regulate the nucleation of actin filaments through their interaction with the Arp2/3 complex and are regulated in turn by binding to GTP-bound Cdc42 and phosphatidylinositol 4,5-bisphosphate. The Nck Src homology (SH) 2/3 adaptor binds via its SH3 domains to a proline-rich region on WASP and N-WASP and has been implicated in recruitment of these proteins to sites of tyrosine phosphorylation. We show here that Nck SH3 domains dramatically stimulate the rate of nucleation of actin filaments by purified N-WASP in the presence of Arp2/3 in vitro. All three Nck SH3 domains are required for maximal activation. Nck-stimulated actin nucleation by N-WASP.Arp2/3 complexes is further stimulated by phosphatidylinositol 4,5-bisphosphate, but not by GTP-Cdc42, suggesting that Nck and Cdc42 activate N-WASP by redundant mechanisms. These results suggest the existence of an Nck-dependent, Cdc42-independent mechanism to induce actin polymerization at tyrosine-phosphorylated Nck binding sites.  相似文献   

15.
Intersectin-s is a modular scaffolding protein regulating the formation of clathrin-coated vesicles. In addition to the Eps15 homology (EH) and Src homology 3 (SH3) domains of intersectin-s, the neuronal variant (intersectin-l) also has Dbl homology (DH), pleckstrin homology (PH) and C2 domains. We now show that intersectin-l functions through its DH domain as a guanine nucleotide exchange factor (GEF) for Cdc42. In cultured cells, expression of DH-domain-containing constructs cause actin rearrangements specific for Cdc42 activation. Moreover, in vivo studies reveal that stimulation of Cdc42 by intersectin-l accelerates actin assembly via N-WASP and the Arp2/3 complex. N-WASP binds directly to intersectin-l and upregulates its GEF activity, thereby generating GTP-bound Cdc42, a critical activator of N-WASP. These studies reveal a role for intersectin-l in a novel mechanism of N-WASP activation and in regulation of the actin cytoskeleton.  相似文献   

16.
In neuroendocrine cells, actin reorganization is a prerequisite for regulated exocytosis. Small GTPases, Rho proteins, represent potential candidates coupling actin dynamics to membrane trafficking events. We previously reported that Cdc42 plays an active role in regulated exocytosis in chromaffin cells. The aim of the present work was to dissect the molecular effector pathway integrating Cdc42 to the actin architecture required for the secretory reaction in neuroendocrine cells. Using PC12 cells as a secretory model, we show that Cdc42 is activated at the plasma membrane during exocytosis. Expression of the constitutively active Cdc42(L61) mutant increases the secretory response, recruits neural Wiskott-Aldrich syndrome protein (N-WASP), and enhances actin polymerization in the subplasmalemmal region. Moreover, expression of N-WASP stimulates secretion by a mechanism dependent on its ability to induce actin polymerization at the cell periphery. Finally, we observed that actin-related protein-2/3 (Arp2/3) is associated with secretory granules and that it accompanies granules to the docking sites at the plasma membrane upon cell activation. Our results demonstrate for the first time that secretagogue-evoked stimulation induces the sequential ordering of Cdc42, N-WASP, and Arp2/3 at the interface between granules and the plasma membrane, thereby providing an actin structure that makes the exocytotic machinery more efficient.  相似文献   

17.
Actin is involved in the organization of the Golgi complex and Golgi-to-ER protein transport in mammalian cells. Little, however, is known about the regulation of the Golgi-associated actin cytoskeleton. We provide evidence that Cdc42, a small GTPase that regulates actin dynamics, controls Golgi-to-ER protein transport. We located GFP-Cdc42 in the lateral portions of Golgi cisternae and in COPI-coated and non-coated Golgi-associated transport intermediates. Overexpression of Cdc42 and its activated form Cdc42V12 inhibited the retrograde transport of Shiga toxin from the Golgi complex to the ER, the redistribution of the KDEL receptor, and the ER accumulation of Golgi-resident proteins induced by the active GTP-bound mutant of Sar1 (Sar1[H79G]). Coexpression of wild-type or activated Cdc42 and N-WASP also inhibited Golgi-to-ER transport, but this was not the case in cells expressing Cdc42V12 and N-WASP(Delta WA), a mutant form of N-WASP that lacks Arp2/3 binding. Furthermore, Cdc42V12 recruited GFP-N-WASP to the Golgi complex. We therefore conclude that Cdc42 regulates Golgi-to-ER protein transport in an N-WASP-dependent manner.  相似文献   

18.
Neural Wiskott-Aldrich syndrome protein (N-WASP) is an actin-regulating protein that induces filopodium formation downstream of Cdc42. It has been shown that filopodia actively extend from the growth cone, a guidance apparatus located at the tip of neurites, suggesting their role in neurite extension. Here we examined the possible involvement of N-WASP in the neurite extension process. Since verprolin, cofilin homology and acidic region (VCA) of N-WASP is known to be required for the activation of Arp2/3 complex that induces actin polymerization, we prepared a mutant (Deltacof) lacking four amino acid residues in the cofilin homology region. The corresponding residues in WASP had been reported to be mutated in some Wiskott-Aldrich syndrome patients. Expression of Deltacof N-WASP suppressed neurite extension of PC12 cells. In support of this, the VCA region of Deltacof cannot activate Arp2/3 complex enough compared with wild-type VCA. Furthermore, H208D mutant, which has been shown unable to bind to Cdc42, also works as a dominant negative mutant in neurite extension assay. Interestingly, the expression of H208D-Deltacof double mutant has no significant dominant negative effect. Finally, the expression of the Deltacof mutant also severely inhibited the neurite extension of primary neurons from rat hippocampus. Thus, N-WASP is thought to be a general regulator of the actin cytoskeleton indispensable for neurite extension, which is probably caused through Cdc42 signaling and Arp2/3 complex-induced actin polymerization.  相似文献   

19.
The Cdc42 effector IRSp53 is a strong inducer of filopodia formation and consists of an Src homology domain 3 (SH3), a potential WW-binding motif, a partial-Cdc42/Rac interacting binding region motif, and an Inverse-Bin-Amphiphysins-Rvs (I-BAR) domain.We show that IRSp53 interacts directly with neuronal Wiskott-Aldrich syndrome protein (N-WASP) via its SH3 domain and furthermore that N-WASP is required for filopodia formation as IRSp53 failed to induce filopodia formation in N-WASP knock-out (KO) fibroblasts. IRSp53-induced filopodia formation can be reconstituted in N-WASP KO fibroblasts by full-length N-WASP, by N-WASPDeltaWA (a mutant unable to activate the Arp2/3 complex), and by N-WASPH208D (a mutant unable to bind Cdc42). IRSp53 failed to induce filopodia in mammalian enabled (Mena)/VASP KO cells, and N-WASP failed to induce filopodia when IRSp53 was knocked down with RNA interference. The IRSp53 I-BAR domain alone induces dynamic membrane protrusions that lack actin and are smaller than normal filopodia ("partial-filopodia") in both wild-type N-WASP and N-WASP KO cells. We propose that IRSp53 generates filopodia by coupling membrane protrusion through its I-BAR domain with actin dynamics through SH3 domain binding partners, including N-WASP and Mena.  相似文献   

20.
Profilin enhances Cdc42-induced nucleation of actin polymerization   总被引:1,自引:0,他引:1  
We find that profilin contributes in several ways to Cdc42-induced nucleation of actin filaments in high speed supernatant of lysed neutrophils. Depletion of profilin inhibited Cdc42-induced nucleation; re-addition of profilin restored much of the activity. Mutant profilins with a decreased affinity for either actin or poly-l-proline were less effective at restoring activity. Whereas Cdc42 must activate Wiskott-Aldrich Syndrome protein (WASP) to stimulate nucleation by the Arp2/3 complex, VCA (verpolin homology, cofilin, and acidic domain contained in the COOH-terminal fragment of N-WASP) constitutively activates the Arp2/3 complex. Nucleation by VCA was not inhibited by profilin depletion. With purified N-WASP and Arp2/3 complex, Cdc42-induced nucleation did not require profilin but was enhanced by profilin, wild-type profilin being more effective than mutant profilin with reduced affinity for poly-l-proline.Nucleation by the Arp2/3 complex is a function of the free G-actin concentration. Thus, when profilin addition decreased the free G-actin concentration, it inhibited Cdc42- and VCA-induced nucleation. However, when profilin was added with G-actin in a ratio that maintained the initial free G-actin concentration, it increased the rate of both Cdc42- and VCA-induced nucleation. This enhancement, also seen with purified proteins, was greatest when the free G-actin concentration was low. These data suggest that under conditions present in intact cells, profilin enhances nucleation by activated Arp2/3 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号