首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MOTIVATION: Structural RNA genes exhibit unique evolutionary patterns that are designed to conserve their secondary structures; these patterns should be taken into account while constructing accurate multiple alignments of RNA genes. The Sankoff algorithm is a natural alignment algorithm that includes the effect of base-pair covariation in the alignment model. However, the extremely high computational cost of the Sankoff algorithm precludes its application to most RNA sequences. RESULTS: We propose an efficient algorithm for the multiple alignment of structural RNA sequences. Our algorithm is a variant of the Sankoff algorithm, and it uses an efficient scoring system that reduces the time and space requirements considerably without compromising on the alignment quality. First, our algorithm computes the match probability matrix that measures the alignability of each position pair between sequences as well as the base pairing probability matrix for each sequence. These probabilities are then combined to score the alignment using the Sankoff algorithm. By itself, our algorithm does not predict the consensus secondary structure of the alignment but uses external programs for the prediction. We demonstrate that both the alignment quality and the accuracy of the consensus secondary structure prediction from our alignment are the highest among the other programs examined. We also demonstrate that our algorithm can align relatively long RNA sequences such as the eukaryotic-type signal recognition particle RNA that is approximately 300 nt in length; multiple alignment of such sequences has not been possible by using other Sankoff-based algorithms. The algorithm is implemented in the software named 'Murlet'. AVAILABILITY: The C++ source code of the Murlet software and the test dataset used in this study are available at http://www.ncrna.org/papers/Murlet/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

3.
Limitations and potentials of current motif discovery algorithms   总被引:10,自引:1,他引:9       下载免费PDF全文
Hu J  Li B  Kihara D 《Nucleic acids research》2005,33(15):4899-4913
  相似文献   

4.
Mining frequent stem patterns from unaligned RNA sequences   总被引:1,自引:0,他引:1  
MOTIVATION: In detection of non-coding RNAs, it is often necessary to identify the secondary structure motifs from a set of putative RNA sequences. Most of the existing algorithms aim to provide the best motif or few good motifs, but biologists often need to inspect all the possible motifs thoroughly. RESULTS: Our method RNAmine employs a graph theoretic representation of RNA sequences and detects all the possible motifs exhaustively using a graph mining algorithm. The motif detection problem boils down to finding frequently appearing patterns in a set of directed and labeled graphs. In the tasks of common secondary structure prediction and local motif detection from long sequences, our method performed favorably both in accuracy and in efficiency with the state-of-the-art methods such as CMFinder. AVAILABILITY: The software is available upon request.  相似文献   

5.
6.
Computational tools for prediction of the secondary structure of two or more interacting nucleic acid molecules are useful for understanding mechanisms for ribozyme function, determining the affinity of an oligonucleotide primer to its target, and designing good antisense oligonucleotides, novel ribozymes, DNA code words, or nanostructures. Here, we introduce new algorithms for prediction of the minimum free energy pseudoknot-free secondary structure of two or more nucleic acid molecules, and for prediction of alternative low-energy (sub-optimal) secondary structures for two nucleic acid molecules. We provide a comprehensive analysis of our predictions against secondary structures of interacting RNA molecules drawn from the literature. Analysis of our tools on 17 sequences of up to 200 nucleotides that do not form pseudoknots shows that they have 79% accuracy, on average, for the minimum free energy predictions. When the best of 100 sub-optimal foldings is taken, the average accuracy increases to 91%. The accuracy decreases as the sequences increase in length and as the number of pseudoknots and tertiary interactions increases. Our algorithms extend the free energy minimization algorithm of Zuker and Stiegler for secondary structure prediction, and the sub-optimal folding algorithm by Wuchty et al. Implementations of our algorithms are freely available in the package MultiRNAFold.  相似文献   

7.
8.
9.
Noncoding RNAs (ncRNAs) are important functional RNAs that do not code for proteins. We present a highly efficient computational pipeline for discovering cis-regulatory ncRNA motifs de novo. The pipeline differs from previous methods in that it is structure-oriented, does not require a multiple-sequence alignment as input, and is capable of detecting RNA motifs with low sequence conservation. We also integrate RNA motif prediction with RNA homolog search, which improves the quality of the RNA motifs significantly. Here, we report the results of applying this pipeline to Firmicute bacteria. Our top-ranking motifs include most known Firmicute elements found in the RNA family database (Rfam). Comparing our motif models with Rfam's hand-curated motif models, we achieve high accuracy in both membership prediction and base-pair–level secondary structure prediction (at least 75% average sensitivity and specificity on both tasks). Of the ncRNA candidates not in Rfam, we find compelling evidence that some of them are functional, and analyze several potential ribosomal protein leaders in depth.  相似文献   

10.
11.
In silico prediction of protein subcellular localization based on amino acid sequence can reveal valuable information about the protein's innate roles in the cell. Unfortunately, such prediction is made difficult because of complex protein sorting signals. Some prediction methods are based on searching for similar proteins with known localization, assuming that known homologs exist. However, it may not perform well on proteins with no known homolog. In contrast, machine learning-based approaches attempt to infer a predictive model that describes the protein sorting signals. Alas, in doing so, it does not take advantage of known homologs (if they exist) by doing a simple "table lookup". Here, we capture the best of both worlds by combining both approaches. On a dataset with 12 locations, similarity-based and machine learning independently achieve an accuracy of 83.8% and 72.6%, respectively. Our hybrid approach yields an improved accuracy of 85.9%. We compared our method with three other methods' published results. For two of the methods, we used their published datasets for comparison. For the third we used the 12 location dataset. The Error Correcting Output Code algorithm was used to construct our predictive model. This algorithm gives attention to all the classes regardless of number of instances and led to high accuracy among each of the classes and a high prediction rate overall. We also illustrated how the machine learning classifier we use, built over a meaningful set of features can produce interpretable rules that may provide valuable insights into complex protein sorting mechanisms.  相似文献   

12.
13.
14.
15.
16.

Background

An important use of data obtained from microarray measurements is the classification of tumor types with respect to genes that are either up or down regulated in specific cancer types. A number of algorithms have been proposed to obtain such classifications. These algorithms usually require parameter optimization to obtain accurate results depending on the type of data. Additionally, it is highly critical to find an optimal set of markers among those up or down regulated genes that can be clinically utilized to build assays for the diagnosis or to follow progression of specific cancer types. In this paper, we employ a mixed integer programming based classification algorithm named hyper-box enclosure method (HBE) for the classification of some cancer types with a minimal set of predictor genes. This optimization based method which is a user friendly and efficient classifier may allow the clinicians to diagnose and follow progression of certain cancer types.

Methodology/Principal Findings

We apply HBE algorithm to some well known data sets such as leukemia, prostate cancer, diffuse large B-cell lymphoma (DLBCL), small round blue cell tumors (SRBCT) to find some predictor genes that can be utilized for diagnosis and prognosis in a robust manner with a high accuracy. Our approach does not require any modification or parameter optimization for each data set. Additionally, information gain attribute evaluator, relief attribute evaluator and correlation-based feature selection methods are employed for the gene selection. The results are compared with those from other studies and biological roles of selected genes in corresponding cancer type are described.

Conclusions/Significance

The performance of our algorithm overall was better than the other algorithms reported in the literature and classifiers found in WEKA data-mining package. Since it does not require a parameter optimization and it performs consistently very high prediction rate on different type of data sets, HBE method is an effective and consistent tool for cancer type prediction with a small number of gene markers.  相似文献   

17.
Performance evaluation of existing de novo sequencing algorithms   总被引:1,自引:0,他引:1  
Two methods have been developed for protein identification from tandem mass spectra: database searching and de novo sequencing. De novo sequencing identifies peptide directly from tandem mass spectra. Among many proposed algorithms, we evaluated the performance of the five de novo sequencing algorithms, AUDENS, Lutefisk, NovoHMM, PepNovo, and PEAKS. Our evaluation methods are based on calculation of relative sequence distance (RSD), algorithm sensitivity, and spectrum quality. We found that de novo sequencing algorithms have different performance in analyzing QSTAR and LCQ mass spectrometer data, but in general, perform better in analyzing QSTAR data than LCQ data. For the QSTAR data, the performance order of the five algorithms is PEAKS > Lutefisk, PepNovo > AUDENS, NovoHMM. The performance of PEAKS, Lutefisk, and PepNovo strongly depends on the spectrum quality and increases with an increase of spectrum quality. However, AUDENS and NovoHMM are not sensitive to the spectrum quality. Compared with other four algorithms, PEAKS has the best sensitivity and also has the best performance in the entire range of spectrum quality. For the LCQ data, the performance order is NovoHMM > PepNovo, PEAKS > Lutefisk > AUDENS. NovoHMM has the best sensitivity, and its performance is the best in the entire range of spectrum quality. But the overall performance of NovoHMM is not significantly different from the performance of PEAKS and PepNovo. AUDENS does not give a good performance in analyzing either QSTAR and LCQ data.  相似文献   

18.
mRNA molecules are folded in the cells and therefore many of their substrings may actually be inaccessible to protein and microRNA binding. The need to apply an accessibility criterion to the task of genome-wide mRNA motif discovery raises the challenge of overcoming the core O(n(3)) factor imposed by the time complexity of the currently best known algorithms for RNA secondary structure prediction. We speed up the dynamic programming algorithms that are standard for RNA folding prediction. Our new approach significantly reduces the computations without sacrificing the optimality of the results, yielding an expected time complexity of O(n(2) psi(n)), where psi(n) is shown to be constant on average under standard polymer folding models. A benchmark analysis confirms that in practice the runtime ratio between the previous approach and the new algorithm indeed grows linearly with increasing sequence size. The fast new RNA folding algorithm is utilized for genome-wide discovery of accessible cis-regulatory motifs in data sets of ribosomal densities and decay rates of S. cerevisiae genes and to the mining of exposed binding sites of tissue-specific microRNAs in A. thaliana.  相似文献   

19.
Perturbation experiments, in which a certain gene is knocked out and the expression levels of other genes are observed, constitute a fundamental step in uncovering the intricate wiring diagrams in the living cell and elucidating the causal roles of genes in signaling and regulation. Here we present a novel framework for analyzing large cohorts of gene knockout experiments and their genome-wide effects on expression levels. We devise clustering-like algorithms that identify groups of genes that behave similarly with respect to the knockout data, and utilize them to predict knockout effects and to annotate physical interactions between proteins as inhibiting or activating. Differing from previous approaches, our prediction approach does not depend on physical network information; the latter is used only for the annotation task. Consequently, it is both more efficient and of wider applicability than previous methods. We evaluate our approach using a large scale collection of gene knockout experiments in yeast, comparing it to the state-of-the-art SPINE algorithm. In cross validation tests, our algorithm exhibits superior prediction accuracy, while at the same time increasing the coverage by over 25-fold. Significant coverage gains are obtained also in the annotation of the physical network.  相似文献   

20.
The prediction of translation initiation sites (TISs) in eukaryotic mRNAs has been a challenging problem in computational molecular biology. In this paper, we present a new algorithm to recognize TISs with a very high accuracy. Our algorithm includes two novel ideas. First, we introduce a class of new sequence-similarity kernels based on string editing, called edit kernels, for use with support vector machines (SVMs) in a discriminative approach to predict TISs. The edit kernels are simple and have significant biological and probabilistic interpretations. Although the edit kernels are not positive definite, it is easy to make the kernel matrix positive definite by adjusting the parameters. Second, we convert the region of an input mRNA sequence downstream to a putative TIS into an amino acid sequence before applying SVMs to avoid the high redundancy in the genetic code. The algorithm has been implemented and tested on previously published data. Our experimental results on real mRNA data show that both ideas improve the prediction accuracy greatly and that our method performs significantly better than those based on neural networks and SVMs with polynomial kernels or Salzberg kernels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号