首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cholera toxin (CT) produced by Vibrio cholerae causes the devastating diarrhea of cholera by catalyzing the ADP-ribosylation of the alpha subunit of the intestinal Gs protein (Gsalpha), leading to characteristic water and electrolyte losses. Mammalian cells contain ADP-ribosyltransferases similar to CT and an ADP-ribosyl(arginine)protein hydrolase (ADPRH), which cleaves the ADP-ribose-(arginine)protein bond, regenerating native protein and completing an ADP-ribosylation cycle. We hypothesized that ADPRH might counteract intoxication by reversing the ADP-ribosylation of Gsalpha. Effects of intoxication on murine ADPRH-/- cells were greater than those on wild-type cells and were significantly reduced by overexpression of wild-type ADPRH in ADPRH-/- cells, as evidenced by both ADP-ribose-arginine content and Gsalpha modification. Similarly, intestinal loops in the ADPRH-/- mouse were more sensitive than their wild-type counterparts to toxin effects on fluid accumulation, Gsalpha modification, and ADP-ribosylarginine content. Thus, CT-catalyzed ADP-ribosylation of cell proteins can be counteracted by ADPRH, which could function as a modifier gene in disease. Further, our study demonstrates that enzymatic cross talk exists between bacterial toxin ADP-ribosyltransferases and host ADP-ribosylation cycles. In disease, toxin-catalyzed ADP-ribosylation overwhelms this potential host defense system, resulting in persistence of ADP-ribosylation and intoxication of the cell.  相似文献   

2.
3.
MRL/lpr and BXSB mice were treated weekly or biweekly with cholera toxin (CT) in intravenous dose of 2 micrograms/mouse. CT treatment notably alleviated proteinuria in MRL/lpr mice, but did not influence the course of lupus nephritis in BXSB male mice. Flow cytometric analysis showed that anomalous B220+ T cells in spleen and thymus were reduced in CT-treated MRL/lpr mice while no significant change in lymphocyte populations was induced in BXSB male mice by this treatment. The suppressive effect of CT treatment on Con A response and the augmentative action on LPS response were observed in MRL/lpr mice. The latter may reflect increased B cells in relative number in the peripheral lymphoid organs. Mitogenic responses in CT-treated BXSB male mice remained unchanged in comparison with those of untreated group. Increased production of IL-6 by spleen cells was demonstrated in MRL/lpr mice treated with CT while in BXSB mice the level of IL-6 was not changed by the treatment with CT. Production of IFN gamma was suppressed by CT treatment in both strains of mice. This may be attributed to the inhibitory effect of CT on IFN gamma-producing Th1 cells as reported previously (Munoz et al, J. Exp. Med. 172: 95-103, 1990). However, CT treatment did not inhibit anti-DNA antibody production in BXSB mice, whereas the autoantibodies were markedly decreased in MRL/lpr mice treated with CT.  相似文献   

4.
The stimulation of gastric acid secretion from parietal cells involves both intracellular calcium and cAMP signaling. To understand the effect of increased cAMP on parietal cell function, we engineered transgenic mice expressing cholera toxin (Ctox), an irreversible stimulator of adenylate cyclase. The parietal cell-specific H(+),K(+)-ATPase beta-subunit promoter was used to drive expression of the cholera toxin A1 subunit (CtoxA1). Transgenic lines were established and tested for Ctox expression, acid content, plasma gastrin, tissue morphology, and cellular composition of the gastric mucosa. Four lines were generated, with Ctox-7 expressing approximately 50-fold higher Ctox than the other lines. Enhanced cAMP signaling in parietal cells was confirmed by observation of hyperphosphorylation of the protein kinase A-regulated proteins LASP-1 and CREB. Basal acid content was elevated and circulating gastrin was reduced in Ctox transgenic lines. Analysis of gastric morphology revealed a progressive cellular transformation in Ctox-7. Expanded patches of mucous neck cells were observed as early as 3 mo of age, and by 15 mo, extensive mucous cell metaplasia was observed in parallel with almost complete loss of parietal and chief cells. Detection of anti-parietal cell antibodies, inflammatory cell infiltrates, and increased expression of the Th1 cytokine IFN-gamma in Ctox-7 mice suggested that autoimmune destruction of the tissue caused atrophic gastritis. Thus constitutively high parietal cell cAMP results in high acid secretion and a compensatory reduction in circulating gastrin. High Ctox in parietal cells can also induce progressive changes in the cellular architecture of the gastric glands, corresponding to the development of anti-parietal cell antibodies and autoimmune gastritis.  相似文献   

5.
Subunit structure of cholera toxin   总被引:17,自引:0,他引:17  
  相似文献   

6.
BT23, a Vibrio cholerae O1 El Tor isolate, possesses the cholera toxin (CT) gene as determined by PCR. However, CT was not detected in the culture medium by the reversed passive latex agglutination test, nor in the whole cell lysate as examined by Western blotting. The toxin-coregulated pilus (TCP) was not detected by Western blotting. This suggests the presence of defects in the regulatory cascade. toxR, toxS and toxT, members of the regulatory cascade, were examined by PCR. toxR and toxS were conserved but toxT was not. CT and TCP production was complemented by transformation of toxT. The lack of toxT was suspected to be the cause of the undetectable production of CT in strain BT23.  相似文献   

7.
Chloroquine inhibition of cholera toxin   总被引:1,自引:0,他引:1  
Cholera toxin (CT) stimulated adenylate cyclase and a phospholipase which elevated cellular levels of 3',5'-cyclic adenosine monophosphate (cAMP) and arachidonic acid (AA). The AA was quickly converted to prostaglandins (PGs) via the cyclo-oxygenase pathway. Chloroquine exerted minimal inhibition of cAMP levels in CT-treated cells, although CT-induced release of [3H]AA and PGs was blocked completely when the drug was added in concentrations as low as 0.1 mM (50 micrograms/ml). Inhibition of [3H]AA release was complete when chloroquine was added before or within 30 min after CT. The capacity of chloroquine to inhibit either phospholipase C (PLC) or phospholipase A2 (PLA2) could explain the antisecretory activity of this drug.  相似文献   

8.
Cholera toxin (CT) has been found to be an extremely potent immunogen for mucosal IgA responses when administered via the intestine. This study has examined both mucosal and systemic immune responses after feeding CT and compared these responses with those obtained after feeding keyhole limpet hemocyanin (KLH), another protein that is strongly immunogenic in mice. Feeding CT to mice resulted not only in IgA antibody in intestinal secretions but also resulted in substantial plasma IgG and IgA antibody levels. Feeding KLH in much larger quantity resulted in little or no antibody response in intestinal secretions or plasma. Lymphoid cells from various tissues of mice fed CT were cultured in vitro for 10 days and the supernatant was tested for antibody to CT. Spontaneous antibody synthesis (no antigen added to cultures) was present in cultures of each cell type, but IgG anti-CT was found mainly in cultures of spleen and mesenteric lymph node cells and IgA anti-CT mainly in cultures of Peyer's patch and lamina propria cells. Peyer's patch cells cultured with CT as antigen synthesized both IgG and IgA anti-CT, suggesting that the antibody response to both isotypes originated in this site. Helper T cell activity for both IgA and IgG anti-CT was detected in spleens, mesenteric lymph nodes, and Peyer's patches. Lastly, when KLH and CT were fed to mice at the same time, an intestinal IgA anti-KLH and plasma IgG anti-KLH response was stimulated, a response pattern similar to that occurring to CT after CT was fed alone. We conclude that mucosal stimulation by CT generates both a systemic IgG and mucosal IgA response to this antigen, and that CT can cause a similar pattern of response to an unrelated protein antigen when both are administered into the intestine at the same time. The data favor the idea that both the IgG and IgA responses originate in GALT and then disseminate to other tissues. We propose that CT accomplishes these effects by altering the regulatory environment within GALT.  相似文献   

9.
The effects of thymopentin, a synthetic analog of the active center of the thymus hormone thymopoietin, on the immune status of mice with two different models of inflammation induced by injection of lipopolysaccharide (LPS) from Gram-negative bacteria were studied. Acute inflammation was induced by a single injection of LPS in a dose of 250 μg/100 g of body weight, and chronic inflammation (sepsis) was modeled by daily injection of LPS for 11 days with a gradual increase in the dose range from 25 to 250 μg/100 g of body weight. Under acute inflammation, a preliminary injection of thymopentin did not induce any additional stimulation of cytokine production increased by LPS. On the contrary, whereas the chronic introduction of LPS was characterized by a depressed production of several cytokines, thymopentin produced an immunostimulating effect. Thus an increase in the production of nitric oxide, interferon-μ, and Hsp70 was demonstrated. In addition, a more effective restoration of the number of thymus cells, as well as an increase in macrophage tumor necrosis factor-α production were observed after cessation of LPS + hormone injections. The results show that preliminary application of thymopentin promotes the regulation of immune cell activity under acute and chronic inflammation.  相似文献   

10.
Studies indicate that administration of the adrenal steroid dehydroepiandrosterone (DHEA) after trauma-hemorrhage in male mice improved cellular immune functions and reduced mortality rates from subsequent sepsis. There is evidence, however, that DHEA is converted to estrogens in males and that estrogens are immunoprotective after trauma-hemorrhage (TH). In contrast, DHEA in females can be converted to testosterone that has deleterious effects on immune functions. The aim of our study, therefore, was to determine whether administration of DHEA in proestrus females after TH would deteriorate immune responses. Proestrus female C3H/HeN mice (age 7-8 wk) were subjected to laparotomy (i.e., soft tissue trauma induced) and hemorrhagic shock (35 +/- 5 mmHg for 90 min) or sham operation. The mice then received DHEA (100 micro/25 g body wt) or vehicle subcutaneously followed by fluid resuscitation (4x the shed blood volume). Plasma IL-6, splenocyte proliferation, splenocyte IL-2, IL-3, IFN-gamma, IL-10 release, and splenic Mphi IL-1beta, IL-6, IL-10, and IL-12 release were determined 24 h after TH. Plasma IL-6 levels were significantly increased in vehicle-treated females, and DHEA administration markedly attenuated this response. In vehicle-treated females, splenocyte proliferation, IL-2, IL-3, and IFN-gamma release, and splenic Mphi IL-1 beta, IL-6, and IL-12 release were maintained or slightly enhanced after TH. In DHEA-treated females, however, these immune functional parameters were either unaltered compared with vehicle-treated animals or even further enhanced, but surprisingly were not depressed. Moreover, DHEA reduced splenocyte and splenic M phi anti-inflammatory cytokine (i.e., IL-10) production after TH compared with vehicle-treated females. Because DHEA further enhances the immune responsiveness in proestrus females after TH, this hormone might be a useful adjunct even in females for further enhancing immune responses and decreasing the mortality rate after trauma and severe blood loss.  相似文献   

11.
The bacterial protein toxin of Vibrio cholerae, cholera toxin, is a major agent involved in severe diarrhoeal disease. Cholera toxin is a member of the AB toxin family and is composed of a catalytically active heterodimeric A-subunit linked with a homopentameric B-subunit. Upon binding to its receptor, GM0(1), cholera toxin is internalized and transported in a retrograde manner through the Golgi to the ER, where it is retrotranslocated to the cytosol. Here, cholera toxin reaches its intracellular target, the basolaterally located adenylate cyclase which becomes constitutively activated after toxin-induced mono-ADP-ribosylation of the regulating G(S)-protein. Elevated intracellular cAMP levels provoke loss of water and electrolytes which is manifested as the typical diarrhoea. The cholera toxin B-subunit displays the capacity to fortify immune responses to certain antigens, to act as a carrier and to be competent in inducing immunological tolerance. These unique features make cholera toxin a promising tool for immunologists.  相似文献   

12.
The primary structure of cholera toxin B-subunit, responsible for the binding of the toxin to cell surfaces, has been elucidated. The polypeptide contains 103 amino acid residues and one intra-chain disulfide bridge between Cys 9 and Cys 86. The molecular weight is calculated to be 11,637, 15–20% higher than the values estimated by physicochemical methods. This value is consistent with a structure containing five moles of B-subunits per mole of cholera toxin.  相似文献   

13.
Crystallization of isoelectrically homogeneous cholera toxin   总被引:5,自引:0,他引:5  
Past difficulty in growing good crystals of cholera toxin has prevented the study of the crystal structure of this important protein. We have determined that failure of cholera toxin to crystallize well has been due to its heterogeneity. We have now succeeded in overcoming the problem by isolating a single isoelectric variant of this oligomeric protein (one A subunit and five B subunits). Cholera toxin purified by our procedure readily forms large single crystals. The crystal form (space group P2(1), a = 73.0 A, b = 92.2 A, c = 60.6 A, beta = 106.4 degrees, one molecule in the asymmetric unit) has been described previously [Sigler et al. (1977) Science (Washington, D.C.) 197, 1277-1278]. We have recorded data from native crystals of cholera toxin to 3.0-A resolution with our electronic area detectors. With these data, we have found the orientation of a 5-fold symmetry axis within these crystals, perpendicular to the screw dyad of the crystal. We are now determining the crystal structure of cholera toxin by a combination of multiple heavy-atom isomorphous replacement and density modification techniques, making use of rotational 5-fold averaging of the B subunits.  相似文献   

14.
15.
Cholera toxin (CT) stimulated the release of arachidonic acid (AA) from Chinese hamster ovary cells with no apparent lag period. CT-induced release of [3H]AA or its metabolites was dose dependent during a 4-hr period of toxin exposure with a minimum effective dose of 0.1 ng/ml. CT-induced release of [3H]AA metabolites began within 15 min of toxin addition and became maximal after approximately 5 hr. Neither CT-A subunit nor CT-B subunit alone caused [3H]AA release. Furthermore, [3H]AA release was not caused by addition of dibutyryl cAMP to the culture medium, indicating that the observed effect of CT on arachidonate metabolism appeared to be independent of cAMP. The effect of CT on AA metabolism is proposed as a possible mechanism leading to the synthesis of prostaglandin E and fluid secretion during cholera.  相似文献   

16.
The effects of crude polyphenol extracted from immature apples on the enzymatic and biological activities of a cholera toxin (CT) were investigated. When the apple polyphenol extract (APE) was examined for properties to inhibit CT-catalyzed ADP-ribosylation of agmatine, it was found that APE inhibited it in a dose-dependent manner. The concentration of APE to inhibit 50% of the enzymatic activity of CT (15 microg/ml) was approximately 8.7 microg/ml. The APE also diminished CT-induced fluid accumulation in two diarrhea models for in vivo mice. In the ligated ileum loops, 25 microg of APE significantly inhibited fluid accumulation induced by 500 ng of CT. In a sealed mouse model, even when APE was administered orally 10 min after a toxin injection, fluid accumulation was significantly inhibited at a comparable dosage. Lineweaver-Burk analysis demonstrated that APE had negative allosteric effects on CT-catalyzed NAD: agmatine ADP-ribosyltransferase. We fractionated the APE into four fractions using LH-20 Sephadex resin. One of the fractions, FAP (fraction from apple polyphenol) 1, which contains non-catechin polyphenols, did not significantly inhibit the CT-catalyzed ADP-ribosylation of agmatine. FAP2, which contains compounds with monomeric, dimeric, and trimeric catechins, inhibited the ADP-ribosylation only partially, but significantly. FAP3 and FAP4, which consist of highly polymerized catechin compounds, strongly inhibited the ADP-ribosylation, indicating that the polymerized structure of catechin is responsible for the inhibitory effect that resides in APE. The results suggest that polymerized catechin compounds in APE inhibit the biological and enzymatic activities of CT and can be used in a precautionary and therapeutic manner in the treatment of cholera patients.  相似文献   

17.
The arrangement of subunits in cholera toxin.   总被引:64,自引:0,他引:64  
D M Gill 《Biochemistry》1976,15(6):1242-1248
Cholera toxin consists of five similar B subunits of apparent molecular weight about 10 600 and one A subunit (29 000) consisting of two peptides (A1 23 000-24 000 and A2 about 5500) linked by a single disulfide bond. Each B subunit also contains one internal disulfide bond which is readily reduced but is protected from carboxymethylation unless the reduced subunits are heated in urea. Tyrosine residues in A1 and in B subunits are readily iodinated, but the intact B assembly does not react with iodine. Upon reaction with the cross-linking reagent dimethyl suberimidate, B subunits may be covalently connected to each other, to A1 and to A2. A1 and A2 may also be cross-linked. The B subunits are probably arranged in a ring with A on the axis. A2 is required for the re-assembly of toxin from its subunits and may serve to hold A1 on the B ring. The maximum activity of cholera toxin in vitro is obtained only when the active peptide, A1, is separated from the rest of the molecule. Such separation, and the insertion of A1 into the cytosol, must follow the binding of the complete toxin, through component B, to the exterior of intact cells. This binding increases the effective concentration of the toxin in the vicinity of the plasma membrane. Possible ways in which A1 then crosses the membrane are considered in the Discussion.  相似文献   

18.
Production of cholera toxin B subunit in Lactobacillus   总被引:2,自引:0,他引:2  
The intracellular expression of the B subunit of cholera toxin (CTB) was first achieved in Lactobacillus paracasei LbTGS1.4 with an expression cassette including the P25 promoter of Streptococcus thermophilus combined with the translation initiation region from the strongly expressed L. pentosus d-lactate dehydrogenase gene (ldhD). Secretion of CTB was next attempted in L. paracasei LbTGS1.4 and L. plantarum NCIMB8826 with four different signal sequences from exported proteins of lactic acid bacteria (Lactococcus lactis Usp45 and PrtP, Enterococcus faecalis unknown protein and S. pyogenes M6 protein). Host-dependent secretion of CTB was clearly observed: whereas none of the secretion cassettes led to detectable CTB in the extracellular fraction of L. paracasei LbTGS1.4, secretion of CTB molecules was clearly achieved with three of the selected signal sequences in L. plantarum NCIMB8826.  相似文献   

19.
Experimental data confirming our earlier suggestion, that cholerae toxin (CT) possesses superantigen (SA) properties are presented. When used in very small doses, CT has been found to induce polyclonal activation of T lymphocytes, essentially exceeding that observed in classical T mitogens characteristic of SA. CT, in contrast to mitogens and similarly to other SA, is shown to display this activity only in the presence of antigen-presenting cells. Experiments with the use of monoclonal antibodies to the variable region of the beta-chain of the T-cell receptor (V beta TCR) have demonstrated that CT, similarly to other SA, are capable of inducing expression of certain types of V beta TCR and causing polyclonal activation of T lymphocytes carrying these types of V beta TCR. The presence of these properties gives grounds for regarding CT as SA. The SA activity of CT has been found to be linked with its subunit A.  相似文献   

20.
ADP-ribosylation of bovine S-antigen by cholera toxin   总被引:2,自引:0,他引:2  
The S-antigen (alias 48K protein or arrestin) of bovine rod photoreceptors contains two stretches of amino acid sequence homologous to the ADP-ribosylation sites of the alpha subunit of transducin (Ta). We have found that cholera toxin transfers the ADP-ribosyl group from NAD to purified bovine S-antigen as well as to S-antigen in rod outer segment membranes, while Bordetella pertussis toxin is unable to catalyze the transfer reaction efficiently. Under the same conditions, both toxins catalyzed ADP-ribosylation of Ta in rod outer segments. The ADP-ribosylation of S-antigen by cholera toxin indicates that S-antigen not only exhibits sequence homology with the ADP-ribosylation sites of Ta, but it must also resemble Ta in the tertiary structure of the domain which determines the susceptibility of S-antigen to the catalytic action of cholera toxin. These results suggest that S-antigen may function as a competitor of Ta in some stage of the cGMP cascade of visual transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号