首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ventral photoreceptor cells bathed in an organ culture medium typically have resting potentials of -85 mV and membrane resistances of 35 Momega and, when dark-adapted, exhibit large potential fluctuations (LPFs) of 60 mV and small potential fluctuations (SPFs) of less than 30 mV. LPFs appear to be regenerative events triggered by SPFs, the well-known quantum bumps. In the dark, SPFs and LPFs occur spontaneously. At intensities near threshold, the rate of occurrence is directly proportional to light intensity, indicating that SPFs and LPFs are elicited by single photon events. At higher intensities, SPFs and LPFs sum to produce a receptor potential that is graded over approximately a 9-log-unit range of light intensity. Amplitude histograms of the discrete potential waves are bimodal, reflecting the SPF and LPF populations. Histograms of current waves are unimodal. SPFs and LPFs are insensitive to 1 microgram tetrodotoxin. I-V characteristics show initial inward currents of approximately 15 nA for voltage clamps to - 40 mV and steady-state outward currents for all clamp potentials. Photoreceptor cells bathed in organ culture medium retain these properties for periods of at least 75 days.  相似文献   

2.
To light stimuli of very low intensity, Limulus photoreceptors give a voltage response with a fluctuating delay. This phenomenon has been called "latency dispersion." If the generator potential is the superposition of discrete voltage events ("bumps"), and if the effect of light upon bump size is negligible, then the latency dispersion and the bump shape completely characterize the frequency response to sinusoidal flicker. For very low light intensities, the latency dispersion of the bumps, the bump shape, and the frequency response are measured. It is found that for data obtained at 20 degrees C, the frequency response can be accounted for completely by the latency dispersion and by the bump shape derived from steady-state noise characteristics. At 10 degrees C, the time scale of the response of the photoreceptor is lengthened. The dispersion of latencies and the bump shape are found not to have the same temperature dependence. However, just as those measured at 20 degrees C, the bump shape and the dispersion of latencies measured at 10 degrees C can predict the frequency response measured under the same conditions. These results strongly suggest that the major mechanisms involved in the generator potential are the latency process and the bump process. At high light intensities, the time scale of the generator potential shortens. The decrease in time scale of the generator potential can be attributed to the decreases in time scales of the bumps and of the latency dispersion process.  相似文献   

3.
The photoreceptor cells of the nocturnal spider Cupiennius salei were investigated by intracellular electrophysiology. (1) The responses of photoreceptor cells of posterior median (PM) and anterior median (AM) eyes to short (2 ms) light pulses showed long integration times in the dark-adapted and shorter integration times in the light-adapted state. (2) At very low light intensities, the photoreceptors responded to single photons with discrete potentials, called bumps, of high amplitude (2–20 mV). When measured in profoundly dark-adapted photoreceptor cells of the PM eyes these bumps showed an integration time of 128 ± 35 ms (n = 7) whereas in dark-adapted photoreceptor cells of AM eyes the integration time was 84 ± 13 ms (n = 8), indicating that the AM eyes are intrinsically faster than the PM eyes. (3) Long integration times, which improve visual reliability in dim light, and large responses to single photons in the dark-adapted state, contribute to a high visual sensitivity in Cupiennius at night. This conclusion is underlined by a calculation of sensitivity that accounts for both anatomical and physiological characteristics of the eye.  相似文献   

4.
Electrophysiological organization of the eye of Aplysia   总被引:2,自引:1,他引:1       下载免费PDF全文
The eye of Aplysia californica was studied by electrophysiological and histological methods. It has a central spheroidal lens which is surrounded by a retina composed of several thousand receptor cells which are replete with clear vesicles, pigmented support cells, neurons which contain secretory granules, and glial cells. The thin optic nerve that connects the eye to the cerebral ganglion gives a simple "on" response of synchronized action potentials. Tonic activity occurs in the optic nerve in the dark and is dependent on previous dark adaptation. Micropipette recordings indicate that the ERG is positive (relative to a bathelectrode) on the outer surface of the eye and negative in the region of the distal segments of the receptors. Intracellular recordings show that receptor cells have resting potentials of 40–50 mv and respond to illumination with graded potentials of up to 55 mv. Dark-adapted receptors exhibit discrete bumps on the graded response to brief light flashes. Other elements in the retina that do not give large graded responses fall into two classes. One class responds to illumination with action potentials that are in synchrony with the extracellularly recorded compound optic nerve potentials. The other class is tonically active and is depolarized or hyperpolarized and inhibited upon illumination. It is apparent that complex excitatory and lateral inhibitory interactions occur among the elements of the retina.  相似文献   

5.
The Drosophila photoreceptor potential is thought to be composed of discrete unit potentials called bumps. The steady-state receptor potential and the accompanying voltage fluctuations were recorded intracellularly under steady illumination. The occurrence rate, effective amplitude, and duration of the bumps were deduced by assuming a shot noise model. Over a wide range of light intensity, the duration of bumps remained essentially constant (25-30 ms). Below the saturation intensity for the receptor potential, the bump rate was roughly proportional to the intensity, and the adjustment of bumps to smaller size at higher intensity was mainly responsible for the nonlinear behavior of the receptor potential. The reduction in size of bumps at increasing light intensity was found to be due mainly to the diminishing magnitude of the bump current, and not to some other secondary effects. The bump rate saturated at about 3 x 105-106 events/s.  相似文献   

6.
A study was made on cats of the dependence of latency, peak latency, amplitudes and slopes of I and II phases of primary evoked potentials in the chiasm, the colliculi, the lateral geniculate body and visual cortex on the intensity of the photic stimulus in the range of intensities of II orders above the threshold. Practically in the whole examined range, the logarithmic connection is retained, testifying to the extremely wide possibility of the visual system to discriminate a signal in securing a reflex act.  相似文献   

7.
Intracellular recordings were obtained from single visual cells of the scallop, Pecten irradians. Two types of units are found. One type gives a graded, depolarizing response to light and the other a graded, hyperpolarizing response. The depolarizing cells are 2–3 log units more sensitive to light and have a longer latency than the hyperpolarizing type. At high light intensities the depolarizing cells are inactivated while the hyperpolarizing cells maintain their responses. When action potentials are seen they occur during illumination in depolarizing cells ("on" response) and after illumination in hyperpolarizing cells ("off" response). The evidence suggests that the depolarizing responses are from the microvilli-brearing proximal cells, and the hyperpolarizing responses from the ciliary-type distal cells of the retina, and that both responses are directly produced by light.  相似文献   

8.
Photoreceptor cells were enzymatically dissociated from the eye of the file clam, Lima scabra. Micrographs of solitary cells reveal a villous rhabdomeric lobe, a smooth soma, and a heavily pigmented intermediate region. Membrane voltage recordings using patch electrodes show resting potentials around -60 mV. Input resistance ranges from 300 M omega to greater than 1 G omega, while membrane capacitance is of the order of 50-70 pF. In darkness, quantum bumps occur spontaneously and their frequency can be increased by dim continuous illumination in a fashion graded with light intensity. Stimulation with flashes of light produces a depolarizing photoresponse which is usually followed by a transient hyperpolarization if the stimulus is sufficiently intense. Changing the membrane potential with current-clamp causes the early phase to invert around +10 mV, while the hyperpolarizing dip disappears around -80 mV. With bright light, the biphasic response is followed by an additional depolarizing wave, often accompanied by a burst of action potentials. Both Na and Ca ions are required in the extracellular solution for normal photoexcitation: the response to flashes of moderate intensity is greatly degraded either when Na is replaced with Tris, or when Ca is substituted with Mg. By contrast, quantum bumps elicited by dim, sustained light are not affected by Ca removal, but they are markedly suppressed in a reversible way in 0 Na sea water. It was concluded that the generation of the receptor potential is primarily dependent on Na ions, whereas Ca is probably involved in a voltage-dependent process that shapes the photoresponse. Light adaptation by repetitive flashes leads to a decrease of the depolarizing phase and a concomitant enhancement of the hyperpolarizing dip, eventually resulting in a purely hyperpolarizing photoresponse. Dark adaptation restores the original biphasic shape of the photoresponse.  相似文献   

9.
The response of invertebrate photoreceptors consists of the summation of quantum bumps, each representing the response to a single photon. The bumps adapt depending on the intensity of the stimulus: their average size is relatively large in dim light and small in bright light. The rate of occurrence of the bumps varies proportionally with light intensity. In the Drosophila mutant trp, unlike in the wild type, the rate does not increase with increasing light intensity and the bumps do not adapt. Here we report an analysis of the trp gene and its expression in normal and mutant flies. Our results suggest that the trp protein is a novel photoreceptor membrane-associated protein, that this protein is not required for the occurrence of bumps but is necessary for adaptation, and that proper function of the trp gene product during pupal development is important for normal visual transduction in the adult.  相似文献   

10.
Transient elementary currents, bumps, stimulated by short dim light flashes were measured in ventral nerve photoreceptors of Limulus. It is demonstrated that light activates two types of bumps, which form two distinct components of the receptor current at higher light intensities. The two bump types, which are both assumed to be activated by single absorbed photons, differ in current amplitude and kinetic parameters. The current amplitude of one bump type is smaller than 0.3 nA and that of the other type is in the usual current range of up to several nanoamperes. The average latency of small bumps measured from the short stimulus flash is shorter than that of the large bumps. The small bumps have slower activation kinetics than the large bumps. It is demonstrated that with increasing flash intensity the small bumps overlap first and form a macroscopic current, on top of which the large bumps are superimposed. Results indicate that a single absorbed photon selectively activates only one kind of the enzyme cascades evoking one bump type. We conclude that the active meta conformation of a rhodopsin molecule selectively binds a specific type of G-protein, which is involved in the stimulation of one of the transduction cascades. The two bump types, which are the elements of two macroscopic current components support the previous assumption that light activates different transduction mechanisms in Limulus photoreceptors.  相似文献   

11.
The influence of an infralow-frequency magnetic field (IMF) with intensity 3-127 k0e for 1 h on the mitotic activity, frequency of chromosome aberrations, and number of corneal epithelial cells of mice was studied. It was shown that the changes in mitotic activity that arise can be explained by a reversible inhibition of cell division at late stages of the mitotic cycle and synchronous entry into mitosis after the removal of this inhibition. The nature of the dependence of the effect on the intensity of the IMF is evidence of a difference in its molecular mechanisms in the region of high and ultrahigh intensities. As a result of the influence of an IMF of the intensity and duration used, no increase in the frequency of aberrant mitoses in corneal epithelial cells was detected. The number of cells in a standard visual field of the microscope also was practically unchanged.  相似文献   

12.
The visual resolution of a single opaque line against an evenly illuminated background has been studied over a large range of background brightness. It was found that the visual angle occupied by the thickness of the line when it is just resolved varies from about 10 minutes at the lowest illuminations to 0.5 second at the highest illuminations, a range of 1200 to 1. The relation between background brightness and just resolvable visual angle shows two sections similar to those found in other visual functions; the data at low light intensities represent rod vision while those at the higher intensities represent cone vision. With violet light instead of white the two sections become even more clearly defined and separated. The retinal image produced by the finest perceptible line at the highest brightness is not a sharp narrow shadow, but a thin broad shadow whose density distribution is described in terms of diffraction optics. The line of foveal cones occupying the center of this shadow suffers a decrease in the light intensity by very nearly 1 per cent in comparison either with the general retinal illumination or with that on the row of cones to either side of the central row. Since this percentage difference is near the limit of intensity discrimination by the retina, its retinal recognition is probably the limiting factor in the visual resolution of the line. The resolution of a line at any light intensity may also be limited by the just recognizable intensity difference, because this percentage difference varies with the prevailing light intensity. As evidence for this it is found that the just resolvable visual angle varies with the light intensity in the same way that the power of intensity discrimination of the eye varies with light intensity. It is possible that visual resolution of test objects like hooks and broken circles is determined by the recognition of intensity differences in their diffracted images, since the way in which their resolution varies with the light intensity is similar to the relation between intensity discrimination and light intensity.  相似文献   

13.
The properties of sustaining fibers (SuF's), whose firing frequency is related to the ambient light intensity, were studied in the rock lobster. Most of the firing patterns shown under various conditions were demonstrated to be physiological, by using chronic implantation techniques. Unusual activity at high light intensities suggests that the lobster visual system is equipped to function only under dim light conditions. Unlike the crayfish, the lobster SuF's do not always indicate light levels but only changes in light intensity. It is suggested that the input from these fibers has a large influence on locomotor activity.  相似文献   

14.
Summary The kinetic features of the action of light on the membrane potential ofNitella mucronata were investigated by measuring the frequency responses at different light intensities ranging from 0.2 to 80 W/m2. Frequencies from 1 cycle/3 h to 32 cycles/min were applied. This range exceeded that of earlier investigations and resulted in the demonstration of allpass elements at low frequencies. From the all-pass elements it was concluded that the system comprises parallel pathways.From the influence of the light intensity on the frequency responses it was seen that the kinetic data depend on the intensity. By means of the Laplace transformation the squarewave responses were calculated from the frequency responses, and it could be demonstrated that a single cell is able of exhibiting all those different types of curve shapes reported in literature, if only one parameter, the light intensity, is changed. With constant modulation depth the amplitude of the evoked changes in potential varied only little with the light intensity. This is in line with a logarithmic dose-effect function as known from many light effects.  相似文献   

15.
Light Adaptation in the Ventral Photoreceptor of Limulus   总被引:4,自引:4,他引:0       下载免费PDF全文
Light adaptation in both the ventral photoreceptor and the lateral eye photoreceptor is a complex process consisting of at least two phases. One phase, which we call the rapid phase of adaptation, occurs whenever there is temporal overlap of the discrete waves that compose a light response. The recovery from the rapid phase of adaptation follows an exponential time-course with a time constant of approximately 75 ms at 21°C. The rapid phase of adaptation occurs at light intensities barely above discrete wave threshold as well as at substantially higher light intensities with the same recovery time-course at all intensities. It occurs in voltage-clamped and unclamped photoreceptors. The kinetics of the rapid phase of adaptation is closely correlated to the photocurrent which appears to initiate it after a short delay. The rapid phase of adaptation is probably identical to what is called the "adapting bump" process. At light intensities greater than about 10 times discrete wave threshold another phase of light adaptation occurs. It develops slowly over a period of ½ s or so, and decays even more slowly over a period of several seconds. It is graded with light intensity and occurs in both voltage-clamped and unclamped photoreceptors. We call this the slow phase of light adaptation.  相似文献   

16.
Adapting bump model for ventral photoreceptors of Limulus   总被引:6,自引:6,他引:0       下载免费PDF全文
Light-evoked current fluctuations have been recorded from ventral photoreceptors of Limulus for light intensity from threshold up to 10(5) times threshold. These data are analyzed in terms of the adapting bump noise model, which postulates that (a) the response to light is a summation of bumps; and (b) the average size of bump decreases with light intensity, and this is the major mechanism of light adaptation. It is shown here that this model can account for the data well. Furthermore, the model provides a convenient framework to characterize, in terms of bump parameters, the effects of calcium ions, which are known to affect photoreceptor functions. From responses to very dim light, it is found that the average impulse response (average of a large number of responses to dim flashes) can be predicted from knowledge of both the noise characteristics under steady light and the dispersion of latencies of individual bumps. Over the range of light intensities studied, it is shown that (a) the bump rate increases in strict proportionality to light intensity, up to approximately 10(5) bumps per second; and (b) the bump height decreases approximately as the -0.7 power of light intensity; at rates greater than 10(5) bumps per second, the conductance change associated with the single bump seems to reach a minimum value of approximately 10(-11) reciprocal ohms; (c) from the lowest to the highest light intensity, the bump duration decreases approximately by a factor of 2, and the time scale of the dispersion of latencies of individual bumps decreases approximately by a factor of 3; (d) removal of calcium ions from the bath lengthens the latency process and causes an increase in bump height but appears to have no effect on either the bump rate or the bump duration.  相似文献   

17.
We recorded by intracellular means responses of horizontal cells of the turtle retina to light increase and decrease of different values against the starting adapting level. In measuring these responses, curves reflecting the dependence of membrane potential deflection on light intensity (amplitude characteristics — ACh) were plotted. It is demonstrated that the ACh of transitional processes (on- and off-peaks) is considerably steeper than ACh of the plateau of the potential, but embraces a much smaller range of light intensities (slightly more than 1 log. un.). During a change in intensity of the adapting background (up to 3 log. un.), the ACh of transitional processes shifts along the scale of light intensities in such a way that its steep part remains in the zone of adapting light. We followed the dynamics in time of ACh shift after the transition from one adapting brightness to another. The ACh of total impulse response was plotted for ganglionic cells of the turtle at different intensities of adapting light. Comparison of these curves with the ACh of horizontal cells shows that its peripheral components are responsible for adaptive shifts of ACh of the visual system and that horizontal cells play an important role in the mechanism of adaptation. It is hypothesized that adaptive ACh shifts are the consequence of positive feedback between the horizontal cells and receptors.Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 1, No. 2, pp. 210–218, September–October, 1969.  相似文献   

18.
Various drosophila mutants were used to dissect the electroretinogram (ERG) frequency response into components of different origins. The ommochrome granules in the receptor cell body are known to migrate in response to light, limiting the amount of light entering the rhabdomere. Comparison between the ERG frequency responses of the wild type and the mutant lacking the ommochrome granules indicates that the pigment migration reduces the amplitude gain at frequencies below 0.5 Hz. The ERG of drosophila compound eyes consists of contributions from receptor cells and the second-order cells in the lamina. Mutants with defective laminae showed a high-frequency cutoff with a corner frequency of about 20 Hz, while in wild type the response peaked in that frequency region. These results suggest that the lamina contributes mainly to the high-frequency components of the ERG transfer function. The shot noise model (Dodge et al., 1968) has been tested in drosophila by comparing the frequency response of the superimposed on the intracellular receptor potential. The results are consistent with the hypothesis that the receptor potential consists of a summation of small discrete potentials (bumps). In a mutant in which the bumps exhibit latency dispersion in response to a dim flash, the receptor showed a poor high-frequency response, the corner frequency being lowered to about 1-2 Hz. The slope of the cutoff was approximately 20 dB/dec indicating that the latency dispersion in this mutant is the major limiting factor in temporal resolution. Light-evoked high frequency oscillations have been observed in the ERG of another mutant. The oscillation was found sharply turned to light flickering at about 55 Hz.  相似文献   

19.
In chronic experiments on alert rabbits, the formation of short-latency positive and negative potentials preceding initial responses, in wide range of light intensities in visual structures, were revealed. The observed potentials were registered in retina under light intensity of 100-120 J. In corpus geniculatum laterale, colliculus superior and visual cortex, they were initiated under 30 J, 15-50 J and 50 J, respectively. The relations of these potentials to light stimulus intensities were studied.  相似文献   

20.
Bumps were recorded in Limulus ventral nerve photoreceptor as deflections in membrane voltage during 10 s illuminations by dim light which were repeated every 20 s. The bump amplitude vs frequency distribution and its dependence on the intensity of a preadapting light flash are described. Light adaptation which diminishes the average bump amplitude alters the character of the bump amplitude distribution from a curve with a convex region to a continuously falling concave curve. Weak light adaptation can increase frequency (and height) of the bumps elicited by constant stimuli. Raising the external Ca2+-concentration from 10 to 40 mmol/l augments the effect of a preadapting light flash in diminishing the bump amplitudes and also increases the bump frequency. The results are consistent with the assumptions
  • that light adaptation is based on a Ca2+-dependent reduction of the amplification factor which determines the bump size and
  • that the coupling between light induced rhodopsin reactions and bump generation is Ca2+-dependent.
  •   相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号