首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the biochemical processes associated with the atherogenic process are increased aortic cholesteryl ester (CE) accumulation and altered prostaglandin (PG) production. The precise physiological role of PG, particularly prostacyclin (PGI2), in the control of CE metabolism in intact aortic smooth muscle cells remains to be fully elucidated. We report here that cytosolic neutral cholesteryl ester hydrolytic activity (NCEH) in intact cultured aortic smooth muscle cells is significantly increased by 75-250 nM PGI2 at the end of a 2-hr incubation period. The effect was mediated by increased intracellular cAMP levels since the effect of PGI2 on NCEH activity was abolished in the presence of an inhibitor of adenylate cyclase activity, viz., dideoxyadenosine (DDA0. Although the addition of 20-100 microM dibutyryl cAMP (Bt2cAMP) and 50-100 microM sodium arachidonate also increased NCEH activity twofold, 6-keto PGF1 alpha, PGE1, and PGE2 did not increase the activity of this enzyme. In contrast to these findings, 75-250 nM PGE2 significantly inhibited CE synthetic activity (ACAT) approximately 60%. Arachidonate or Bt2cAMP did not affect ACAT activity. This decrease in ACAT activity induced by PGE2 does not appear to be mediated by cAMP. Taken together, these findings suggest that PGI2, a well known potent vasodilator and inhibitor of platelet aggregation, and PGE2 may have an important regulatory role in aortic CE metabolism.  相似文献   

2.
20-Isopropylidene-PGE1 (Isop-PGE1) was about 10 times more potent than PGE1 in inhibition of thrombin-induced aggregation of rabbit washed platelets. Likewise, 20-isopropylidene-17(R)-methyl-carbacyclin (CS-570), a stable PGI2 analogue, was more potent than carbacyclin in the anti-aggregatory activity. In order to define the platelet-prostaglandin interactions, a binding assay was done using platelet membranes with [3H]-PGE1 as a radioligand. Isop-PGE1 (IC50 = 0.18 microM) bound to the PG receptors more potently than PGE1 (IC50 = 2.1 microM). CS-570 (IC50 = 0.39 microM) was more potent than carbacyclin (IC50 = 1.9 microM). These indicate that introduction of an isopropylidene group to the carbon 20 of PGs increases the binding ability to the receptors. These PGE1 and PGI2 analogues activated platelet membrane adenyl cyclase and increased intracellular cAMP levels with the same potency series obtained in the binding experiments. All these results suggest that the binding to the receptors by these PGs is coupled to the activation of adenyl cyclase, followed by the increase in cAMP levels in platelets and the inhibition of platelet aggregation. Thus, the increased anti-aggregatory activity of 20-isop-PGs may be explained by their increased affinity for the PG receptors and stimulation of adenyl cyclase. 15-Epimeric-20-isopropylidene-PGE1 (15-Epi-isop-PGE1), which has an unnatural configuration of the 15-hydroxyl group, was much less potent than isop-PGE1 in the binding experiment and the other three investigations. This indicates that the configuration of the 15-hydroxyl group is important for the binding to the PG receptors and the consequent activities in platelets.  相似文献   

3.
Methods for the evaluation of competitive interactions at receptors associated with platelet activation and inhibition using aggregometry of human PRP have been developed. The evidence supports the suggestion that PGE1 and PGI2 share a common receptor for inhibition of platelet reactivity, but only a portion (if any) of the aggregation stimulation associated with PGE2 is the result of PGE2 binding (without efficacy) to this receptor. PGE2 (at .3-20 microM) is an effective antagonist of PGE1, PGI2, and PGD2 producing a shift of about one order of magnitude in the IC50-values obtained from complete aggregation inhibition dose response curves. The antagonism of PGD2 inhibition is particularly notable, 80 nM PGE2 levels are detectable. This and other actions of PGE2 indicate another platelet receptor for PGE2. PGE1 acts at both the PGE2 and PGI2 receptor. Other substances showing PGI2-like actions only at high doses (1-30 microM), display additive responses with PGI2 indicative of decreased affinity for the I2/E1 receptor and the absence of PGE2-like aggregation stimulation activity. PGI2 methyl ester has intrinsic inhibitory action not associated with in situ ester hydrolysis. The methyl ester is dissaggregatory showing particular specificity for inhibition of release and second wave aggregation.  相似文献   

4.
A Sakai  M Yajima  S Nishio 《Life sciences》1990,47(8):711-719
We studied the cytoprotective effect of TRK-100, a chemically stable analogue of prostacyclin (PGI2), in the cultured human endothelial cells from umbilical vein. TRK-100 (10 and 100 nM) stimulated significantly proliferation of endothelial cells but did not affect PGI2 production in endothelial cells. Exposure of cultured endothelial cells to homocysteine (2.5 mM) or glucose (50 mM) caused concentration-dependent cytotoxicity, as evidenced by a decrease in number of viable cells. When endothelial cells were treated with TRK-100 simultaneously or prior to, but not after, exposure to injury substances, decreases in viable cell were significantly suppressed. The protective effect of TRK-100 against homocysteine-induced cytotoxicity also appeared in endothelial cells treated with acetylsalicylic acid, suggesting that endogenous PGI2 did not involve in the protective effect of TRK-100.  相似文献   

5.
Prostaglandin E1 (PGE1) at 1 nM inhibits arginine-vasopressin (AVP)-induced water reabsorption in the rabbit cortical collecting tubule (RCCT), while 100 nM PGE1, by itself, stimulates water reabsorption (Grantham, J. J., and Orloff, J. (1968) J. Clin. Invest. 47, 1154-1161). To investigate the basis for these two responses, we measured the effects of prostaglandins on cAMP metabolism in purified RCCT cells. In freshly isolated cells, PGE2, PGE1, and 16,16-dimethyl-PGE2 acting at high concentrations (0.1-10 microM) stimulated cAMP accumulation; however, one PGE2 analog, sulprostone (16-phenoxy-17,18,19,20-tetranor-PGE2 methylsulfonilamide), failed to stimulate cAMP accumulation or to antagonize PGE2-induced cAMP formation; PGD2, PGF2 alpha, and a PGI2 analog, carbacyclin (6-carbaprostaglandin I2), also failed to stimulate cAMP synthesis. These results suggest that there is a PGE-specific stimulatory receptor in RCCT cells which mediates activation of adenylate cyclase. Occupancy of this receptor would be anticipated to cause water reabsorption by the collecting tubule. At lower concentrations (0.1-100 nM) PGE2, PGE1, 16,16-dimethyl-PGE2, and, in addition, sulprostone inhibited AVP-induced cAMP accumulation by fresh RCCT cells in the presence of cAMP phosphodiesterase inhibitors. Pertussis toxin pretreatment of RCCT cells blocked the ability of both PGE2 and sulprostone to inhibit AVP-induced cAMP accumulation. In membranes prepared from RCCT cells, sulprostone prevented stimulation of adenylate cyclase by AVP. These results suggest that E-series prostaglandins (including sulprostone) can act through an inhibitory PGE receptor(s) coupled to the inhibitory guanine nucleotide regulatory protein, Gi, to block AVP-induced cAMP synthesis by RCCT cells. Occupancy of this receptor would be expected to cause inhibition of AVP-induced water reabsorption in the intact tubule. Curiously, after RCCT cells were cultured for 5-7 days, PGE2 no longer inhibited AVP-induced cAMP accumulation, but PGE2 by itself could still stimulate cAMP accumulation. In contrast to PGE2, epinephrine acting via an alpha 2-adrenergic, Gi-linked mechanism did block AVP-induced cAMP formation by cultured RCCT cells. This implies that some component of the inhibitory PGE response other than Gi is lost when RCCT cells are cultured.  相似文献   

6.
Slices of human full-term placentas, obtained by elective cesarean section, were incubated in the absence or presence of prostaglandins (PGs) and the cyclic AMP phosphodiesterase (cAMP PDE) activity was measured. PGE1 and PGI2 were shown to stimulate cAMP PDE activity. The effect of PGE1 is related to an increase in the Vmax of the low Km activity without alteration of this apparent Km. Several findings suggest that the cAMP PDE is activated by its own substrate; PGE1 and PGI2, promote an increase of cAMP formation which is observed before the cAMP PDE activation. Dibutyryl cAMP or theophylline also activate cAMP PDE. In contrast, PGF2 alpha does not influence either adenylate cyclase or AMP PDE. In addition, we found that the ability of the placenta to degrade cAMP, increases after parturition. PG levels are higher in the foeto-placental unit during labor, and a causal relationship between these two phenomena is possible. Our data supporting the concept of hormonal control of cAMP PDE is consistent with the hypothesis that an accelerated cAMP metabolism in placenta contributes to the maintenance of a constant equilibrium of the cyclic nucleotide levels in the foeto-placental unit.  相似文献   

7.
To determine the influence of prostaglandins on cAMP metabolism in renal papillary collecting tubule (RPCT) cells, intracellular cAMP levels were measured after incubating cells with prostaglandins (PGs) alone or in combination with arginine vasopressin (AVP). PGE1, PGE2 and PGI2, but not PGD2 or PGF2 alpha, increased intracellular cAMP concentrations. At maximal concentrations (10(-5) M) the effects of PGE2 plus PGI2 (or PGE1), but not of PGI2 plus PGE1, were additive suggesting that at least two different PG receptors may be present in RPCT cell populations. Bradykinin treatment of RPCT cells caused an accumulation of intracellular cAMP which was blocked by aspirin and was quantitatively similar to that observed with 10(-5) M PGE2. PGs, when tested at concentrations (e.g. 10(-9) M) which had no independent effect on intracellular cAMP levels, did not inhibit the AVP-induced accumulation of intracellular cAMP in RPCT cells. These results indicate that PGs do not block AVP-induced accumulation of intracellular cAMP in RPCT cells at concentrations of PGs which have been shown to inhibit the hydroosmotic effect of AVP on perfused collecting tubule segments. However, at higher concentrations of PGs (e.g. 10(-5) M), the effects of AVP plus PGE1, PGE2, PGI2 or bradykinin on intracellular cAMP levels were not additive. Thus, under certain conditions, there is an interaction between PGs and AVP at the level of cAMP metabolism in RPCT cells.  相似文献   

8.
Several prostaglandins inhibit the cAMP response to glucagon and beta-adrenergic stimulation in hepatocytes. To probe the mechanism of this inhibition, we have examined in primary hepatocyte cultures how pretreatment with pertussis toxin (islet-activating protein) influences the ability of the cells to respond to hormones and prostaglandins. Pertussis toxin augmented the effects of glucagon, epinephrine and isoproterenol, and also markedly enhanced the cAMP response to prostaglandin E1 (PGE1). Furthermore, whereas PGE1, PGE2, PGI2 and PGF2 alpha attenuated the cAMP responses to glucagon in control cultures, this inhibition was abolished in cells pretreated with pertussis toxin. A more detailed comparison was made of the effects of PGE1 and PGF2 alpha. In cells not treated with pertussis toxin, both these prostaglandins at high concentrations reduced the cAMP response to glucagon and isoproterenol by approximately 50%, but dose-effect curves showed that PGE1 was about 100-fold more potent as an inhibitor than PGF2 alpha. Pertussis toxin abolished the inhibitory effects of PGE1 and PGF2 alpha with almost identical time and dose requirements. The results obtained with PGE1, PGE2, PGI2 and PGF2 alpha suggest that prostaglandins of different series attenuate hormone-activable adenylate cyclase in hepatocytes through a common mechanism, dependent on the inhibitory GTP-binding protein.  相似文献   

9.
Treatment of murine peritoneal macrophages with 100 nM prostaglandin E2 (PGE2) produced a rapid biphasic increase in intracellular cAMP that was maximal at 1 min and sustained through 20 min. Pretreatment of macrophages with 100 ng/ml of lipopolysaccharide (LPS) for 60 min prior to PGE2 decreased the magnitude of cAMP elevation by 50%, accelerated the decrease of cAMP to basal levels, and abolished the sustained phase of cAMP elevation. The effect of LPS was concentration-dependent, with maximal effect at 10 ng/ml in cells incubated in the presence of 5% fetal calf serum and at 1 microgram/ml in the absence of fetal calf serum. LPS also inhibited cAMP accumulation in cells treated with 100 microM forskolin, but the decrease was about half that seen in cells treated with PGE2. LPS concentrations that inhibited cAMP accumulation produced a 30% increase in soluble low Km cAMP phosphodiesterase activity while having no effect on particulate phosphodiesterase activity. The nonspecific phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, as well as the more specific inhibitors rolipram and Ro-20-1724 were effective in inhibiting soluble phosphodiesterase activity in vitro, producing synergistic elevation of cAMP in PGE2-treated cells, and blocking the ability of LPS to inhibit accumulation of cAMP. Separation of the phosphodiesterase isoforms in the soluble fraction by DEAE chromatography indicated that LPS activated a low Km cAMP phosphodiesterase. The enzyme(s) present in this peak could be activated 6-fold by cGMP and were potently inhibited by low micromolar concentrations of Ro-20-1724 and rolipram. Using both membranes from LPS-treated cells and membranes incubated with LPS, no decrease in adenylylcyclase activity could be attributed to LPS. Although effects of LPS on the rate of synthesis of cAMP cannot be excluded, the present evidence is most consistent with a role for phosphodiesterase activation in the inhibitory effects of LPS on cAMP accumulation in murine peritoneal macrophages.  相似文献   

10.
The present study evaluates the effect of dipyridamole and pentoxifylline, individually and in combination, on PGI2-like production and arachidonic acid metabolism of rat aorta "in vitro". Pentoxifylline 100 microM and dipyridamole 92 and 184 microM increased PGI2-like activity, as measured by the platelet aggregation inhibitory capacity of the aortic ring incubates, by 71%, 46% and 60% respectively; a greater increase in PGI2-like activity was observed with the combination of the drugs than when they were used separately. This effect was observed even at the lowest doses assayed. In fact, dipyridamole 9.2 microM plus pentoxifylline 1 microM increased the PGI2-like activity by 30% while the individual increase was 4.5% and 10.6% respectively. To obtain more information on the effect of the dipyridamole-pentoxifylline combination on arachidonic acid metabolism, arteries were incubated with (1-14C) arachidonic acid, and the 6-keto-PGF1 alpha and PGE2 quantified. Dipyridamole 92 microM plus pentoxifylline 1 and 10 microM increased 6-keto-PGF1 alpha and PGE2 production by about 30% and 48% respectively while the combination with pentoxifylline 100 microM increased the 6-keto-PGF1 alpha 76.5% and the PGE2 50%. The possible biological effect and therapeutic implications of increased PGI2 production by the arteries due to the dipyridamole-pentoxifylline combination remains to be ascertained.  相似文献   

11.
Recent data suggest that prostaglandins (PGs) are involved in the regulation of basophil activation. The aim of this study was to characterize the basophil PG-binding sites by means of radioreceptor assays using 3H-labeled PGs. Scatchard analysis for pure (greater than 95%) chronic myeloid leukemia (CML) basophils revealed two classes of PGE1-binding sites differing in their affinity for the natural ligand (Bmax1 = 217 +/- 65 fmol/10(8) cells; Kd1 = 0.5 +/- 0.2 nM; Bmax2 = 2462 +/- 381 fmol/10(8) cells; Kd2 = 47 +/- 20 nM; IC50 = PGE1 less than PGI2 less than PGD2 less than PGE2 less than PGF2 alpha) as well as two classes of PGI2 (iloprost)-binding sites (Bmax1 = 324 +/- 145 fmol/10(8) cells; Kd1 = 0.5 +/- 0.3 nM; Bmax2 = 2541 +/- 381; Kd2 = 27 +/- 6 nM; IC50 = PGI2 less than PGE1 less than PGD2 less than PGE2 less than PGF2 alpha. In addition, CML basophils exhibited a single class of PGD2-binding sites (Bmax = 378 +/- 98 fmol/10(8) cells; Kd = 13 +/- 4 nM; IC50: PGD2 less than PGI2 less than PGE1 less than PGE2 less than PGF2 alpha). In contrast, we were unable to detect specific saturable PGE2-binding sites. Primary and immortalized (KU812) CML basophils revealed an identical pattern of PG receptor expression. Basophils (KU812) expressed significantly (p less than 0.001) lower number of PGE1 (PGI2)-binding sites (Bmax1: 9% (20%) of control; Bmax2: 36% (50%) of control) when cultured with recombinant interleukin 3 (rhIL-3), a basophil-activating cytokine, whereas rhIL-2 had no effect on PG receptor expression. Functional significance of binding of PGs to basophils was provided by the demonstration of a dose-dependent increase in cellular cAMP upon agonist activation, with PGE1 (ED50 = 1.7 +/- 1.1 nM) and PGI2 (ED50 = 2.8 +/- 2.3 nM) being the most potent compounds. These findings suggest that human basophils express specific receptors for PGE1, PGI2 as well as for PGD2.  相似文献   

12.
dl-5E, 19,14-di dehydro-carbo-prostacyclin (DDH-carbo PGI2), a stable prostacyclin (PGI2) derivative, but not prostaglandin (PG) E2, stimulated the adenylate cyclase of synovial fluid macrophages, isolated from rheumatoid patients with an active synovitis, in a dose dependent manner (10-1000 ng/ml). DDH-carbo PGI2 also stimulated synovial macrophage cAMP synthesis when injected into the knee joint. Exogenous arachidonic acid (AA) had little effect on cyclic-AMP (cAMP) formation or PGI2 release (assayed as 6ketoPGF1 alpha). It stimulated, however, the release of PGE2 and, to a lesser extent, thromboxane (Tx) A2 (measured as TxB2).  相似文献   

13.
Various chemically stable prostaglandin analogues were studied for their affinity towards the PGD2-receptor in human platelet membranes in order to define the requirements for specific ligand binding to this receptor. On replacing the 11- or 9-hydroxyl groups of PGF2 alpha by an 11 alpha- or 9 beta-chloro- or fluoro atom, stable prostaglandin analogues were obtained, which showed high affinity towards the PGD2-receptor. The lower side chain consisted of a 15-cyclohexyl group or of the natural 15-n-pentyl group, other substitutents decreased the affinity substantially. The highest PGD2-mimetic activity with a relative affinity of 0.5 to the PGD2-receptor was found in 9-deoxy-9 beta-chloro-16,17,18,19,20-pentanor-15-cyclohexyl-PGF2 alpha (ZK 110 841, compound 16 in Table 1). ZK 110 841 is a chemically stable crystalline substance, which is orally active and which might thus turn out to be an interesting tool for the study of PGD2-receptor interactions. Some other prostaglandin as well as prostacyclin analogues with a 15-cyclohexyl or 15-n-pentyl group exhibited in addition to their known high affinity to the PGE2-receptor of human uterine membranes or the PGI2-receptor of human platelets also affinities to the PGD2-receptor. Generally, the receptor affinities correlate with the activities as stimulators of adenylate cyclase and inhibitors of thrombin induced elevation of cytoplasmic free calcium as well as their ability to inhibit ADP-induced platelet aggregation. The PGI2-character regarding the effector systems prevails in compounds with affinity to both the PGI2- and PGD2-receptor. Compounds which bind to the PGE2- and PGD2-receptor show a flat dose response curve regarding platelet activation suggesting a mixture of pro- and antiaggregatory properties within these molecules.  相似文献   

14.
The relationship between polyphosphoinositide hydrolysis and protein kinase C (PKC) activation was explored in rabbit platelets treated with the agonists platelet-activating factor (PAF), thrombin and 12-O-tetradecanoylphorbol 13-acetate (TPA), and with the anti-aggregant prostacyclin (PGI2). Measurement of the hydrolysis of radiolabelled inositol-containing phospholipids relied upon the separation of the products [3H]inositol mono-, bis- and tris-phosphates by Dowex-1 chromatography. PKC activity, measured in platelet cytosolic and Nonidet-P40-solubilized particulate extracts that were fractionated by MonoQ chromatography, was based upon the ability of the enzyme to phosphorylate either histone H1 in the presence of the activators Ca2+, diacylglycerol and phosphatidylserine, or protamine in the absence of Ca2+ and lipid. Treatment of platelets for 1 min with PAF (2 nM) or thrombin (2 units/ml) led to the rapid hydrolysis of inositol-containing phospholipids, a 2-3-fold stimulation of both cytosolic and particulate-derived PKC activity, and platelet aggregation. Exposure to TPA (200 nM) for 5 min did not stimulate formation of phosphoinositides, but translocated more than 95% of cytosolic PKC into the particulate fraction, and induced a slower rate of aggregation. PGI2 (1 microgram/ml) did not enhance phosphoinositide production, and at higher concentrations (50 micrograms/ml) it antagonized the ability of PAF, but not that of thrombin, to induce inositol phospholipid turnover, even though platelet aggregation in response to both agonists was blocked by PGI2. On the other hand, PGI2 alone also appeared to activate (by 3-5-fold) cytosolic and particulate PKC by a translocation-independent mechanism. The activation of PKC by PGI2 was probably mediated via cyclic AMP (cAMP), as this effect was mimicked by the cAMP analogue 8-chlorophenylthio-cAMP. It is concluded that this novel mechanism of PKC regulation by platelet agonists may operate independently of polyphosphoinositide turnover, and that activation of cAMP-dependent protein kinase represents another route leading to PKC activation.  相似文献   

15.
Since Prostacyclin (PGI2) is a major product of arachidonic acid metabolism in the human thyroid, we have studied the effects of PGI2 on cAMP accumulation in human thyroid slices and cultured thyrocytes. In both systems, PGI2 caused a dose- and time-dependent increase of cAMP accumulation with higher potency and efficacy than PGE2. Two optically active isomers of 5,6-dihydro-PGI2, i.e. stable synthetic analogs of PGI2, had qualitatively similar effects to PGI2. The relative potency ratio between the alpha- and beta- isomer as well as their potency compared to PGI2 were substantially similar to their potency in inhibiting human platelet aggregation. In thyroid slices, PGI2 and its stable analogs had a greater effect than TSH in causing cAMP accumulation; however, in contrast to TSH, this effect was not associated with increased iodothyronine release except at maximal PGI2 concentrations. TSH had no detectable effect on thyroidal PGI2 synthesis and release. In cultured thyrocytes the effects of PGI2 and its stable analogs were considerably less than those obtained with TSH and required higher concentrations. Such a discrepancy was not found in the case of PGE2. These findings suggest the existence of a specific PGI2-responsive adenylate cyclase system in human thyroid cells other than thyrocytes, of possible physiologic significance.  相似文献   

16.
Initial experiments demonstrated that the hydantoin prostaglandin derivative, BW 245 C, has potent anti-aggregatory activity on human platelets which may result from its structural similarity with one of the natural prostaglandins. The aim of the present study was to extend this preliminary pharmacological characterization and to determine which, if any, prostaglandin receptor-type is responsible for mediating the biological activity of BW 245 C. A marked species variation was observed in the anti-aggregatory potency of BW 245 C such that in the human (0.36 X PGE1) it was about one hundred times more effective than in the rat (0.003 X PGE1). The relative potencies of PGI2 (ca. 10 X PGE1) and PGE1 were, however, similar in both species. An intravenous bolus injection of 250 micrograms/kg BW 245 C lowered systolic (-23%) and diastolic (-34%) blood pressure in spontaneously hypertensive rats. In radioligand binding studies it showed a high affinity and selectivity for PGD2 platelet receptors, binding to PGI2 or PGE2 receptors was not detectable. Therefore it is concluded that the platelet and cardiovascular actions of BW 245 C are mediated by PGD2 receptors and this accounts for the observed species variation which is a characteristic of this prostaglandin.  相似文献   

17.
Prostaglandins regulate macrophage function by their action on membrane-associated adenyl cyclase. In order to define more directly macrophage-prostaglandin interactions, a binding assay has been developed for macrophage receptors using (3H)-PGI2 as ligand. (3H)-PGI2 binding was specific, saturable and reversible. Moreover, specific binding showed to be enriched in a membrane-enriched fraction of the cells. The assay conditions ensured stability of (3H)-PGI2 during incubations and should exclude intracellular accumulation of the ligand in macrophages. Unlabelled PGE2 and PGI2 competed for (3H)-PGI2 specific binding in both macrophages and membrane preparations. PGE2 showed to be more potent in this respect than PGI2, a phenomena which was also observed for prostaglandin activation of cAMP production in macrophages. The data suggest an interaction at receptor level of endogenously released PGE2 and PGI2 by peritoneal macrophages in vivo and provide support for a previously proposed mechanism of action of low concentrations of PGE2, counteracting stimulation of cAMP production by PGI2 in macrophages.  相似文献   

18.
C P Cox  J Linden  S I Said 《Peptides》1984,5(2):325-328
Platelet-activating factor (PAF), a potent endogenous phospholipid released by a variety of mammalian cells, induces platelet activation in vivo and in vitro. Little is known, however, about the physiological modulation of its actions. We have examined the ability of two naturally occurring compounds which stimulate cAMP production, vasoactive intestinal peptide (VIP) and prostacyclin (PGI2), to inhibit PAF-induced platelet aggregation and secretion in vitro. Washed, [3H]serotonin-labeled, rabbit platelets were incubated 60 sec in the presence of VIP, PGI2 or 3-isobutyl-1-methylxanthine (IBMX) and subsequently stimulated with PAF. In separate studies, cAMP levels were determined in similar aliquots of platelets incubated for 30 sec with VIP, PGI2 or IBMX. VIP, PGI2 and IBMX inhibited platelet aggregation and secretion in a dose-dependent manner. Fifty percent inhibition was achieved at final concentrations of 1.7 X 10(6) M VIP, 3.6 X 10(6) M PGI2 and 6.5 X 10(5) M IBMX. IBMX potentiated the inhibitory effects of VIP and PGI2 on PAF-induced platelet activation. VIP and PGI2 elevated platelet cAMP levels four-fold and 50-fold, respectively, in the presence of 10(3) M IBMX. These findings demonstrate that VIP inhibits PAF-induced platelet activation, with a potency comparable to that of PGI2.  相似文献   

19.
The antagonism by prostacyclin (PGI2) and prostaglandin E1 (PGE1) of bronchoconstriction induced by serotonin (5HT), collagen, arachidonic acid (AA) and anaphylaxis, as well as of thrombocytopenia was studied in the guinea-pig. Under conditions where PGE1 prevented bronchoconstriction by 5HT, by collagen or by AA better than the accompanying thrombocytopenia, PGI2 was a selective antagonist of bronchoconstriction due to collagen, but failed to interfere with that due to 5HT or to AA. Collagen-induced bronchoconstriction in the guinea-pig is platelet-dependent, being inhibited by immune platelet depletion, whereas that due to AA is platelet-independent. PGI2 blocks bronchoconstriction by collagen, because it prevents the platelet activation, and fails to interfere with bronchoconstriction by AA, even though it reduces the accompanying thrombocytopenia, because the role of platelets is negligible. PGE1 and PGI2 failed to interfere with thrombocytopenia or with bronchoconstriction of anaphylactic shock, and were inactive even when the acute bronchial effect was suppressed by anti-histamine treatment. Anaphylactic thrombocytopenia is beyond the control of agents which stimulate the cyclic AMP system, and involves specific mechanism which are not stimulated in platelet-rich plasma.  相似文献   

20.
It has been proposed that a portion of the biologic actions of vasodilator prostaglandins occurs via an interaction with specific adenylate cyclase-linked receptors. This hypothesis was explored further in the renal microvasculature by examining the effects of PGI2, PGE1, and PGE2 on rabbit preglomerular microvascular adenylate cyclase. A membrane preparation derived from freshly isolated rabbit renal preglomerular microvessels was used in these studies. NaF, forskolin, or 5'-guanylyl imidodiphosphate were found to be effective in increasing adenylate cyclase activity in the absence of exogenous guanosine-5'-triphosphate. A dose-dependent stimulation of adenylate cyclase was also observed with guanosine-5'-triphosphate. PGE1, PGE2, and PGI2 produced a dose-dependent stimulation of adenylate cyclase activity only in the presence of guanosine-5'-triphosphate suggesting that this nucleotide is essential for prostaglandin-induced stimulation of the enzyme. PGI2 exhibited a time-dependent increase in adenylate cyclase activity and this increased activity reached a plateau at 20-25 min. When PGE1 and PGE2 were added together, no additive effect on adenylate cyclase stimulation was noted whereas PGI2 and PGE2 when added together produced an additive stimulatory effect. When viewed together, these data suggest the presence of separate PGI2 and PGE adenylate cyclase-linked receptors in rabbit renal preglomerular microvessels. These findings also suggest that in the renal microvasculature, cyclic AMP may be a second messenger mediating the vasodilatory effects of both PGI2 and PGE2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号