首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Liquid circulation superficial velocity and gas holdup behaviours were investigated in an external-loop airlift bioreactor of 0.170?m3 liquid volume in gas-induced and forced-circulation-loop operation modes, in the presence of static mixers made of corrugated stainless steel pieces, resulting in packets with the height-to-diameter ratio equal to unity and using non-Newtonian starch solutions as liquid phase. The static mixers were disposed in the riser in three blocks, each with three mixing packets, successively turned 90° to the adjacent mixing element. It was found that in the presence of static mixers and forced-loop operation mode, liquid circulation superficial velocity in the riser section was significantly diminished, while gas holdup increased in a great measure. It was considered that static mixers split the fluid into individual streams and break up the bubbles, resulting in small bubble sizes with a relative homogeneous bubble distribution over riser cross section. They act as supplementary resistances in liquid flow, reducing riser cross sectional area, equivalent with A D /A R area ratio diminishing.  相似文献   

2.
A simple model for prediction of liquid velocity in external-loop airlift bioreactors has been developed. Theoretical correlations for friction factor of gas-non-Newtonian two-phase flows and for liquid velocity in the riser were derived using the concept of an eddy diffusivity. The predictions of the proposed model were compared with the available experimental data for the friction factor and the liquid velocity in the riser of external-loop airlift contactors. Satisfactory agreement was obtained.  相似文献   

3.
The hydrodynamic characteristics and the overall volumetric oxygen transfer coefficient of a new multi-environment bioreactor which is an integrated part of a wastewater treatment system, called BioCAST, were studied. This bioreactor contains several zones with different environmental conditions including aerobic, microaerophilic and anoxic, designed to increase the contaminant removal capacity of the treatment system. The multi-environment bioreactor is designed based on the concept of airlift reactors where liquid is circulated through the zones with different environmental conditions. The presence of openings between the aerobic zone and the adjacent oxygen-depleted microaerophilic zone changes the hydrodynamic properties of this bioreactor compared to the conventional airlift designs. The impact of operating and process parameters, notably the hydraulic retention time (HRT) and superficial gas velocity (U G), on the hydrodynamics and mass transfer characteristics of the system was examined. The results showed that liquid circulation velocity (V L), gas holdup (ε) and overall volumetric oxygen transfer coefficient ( $ k_{\text{L}} a_{\text{L}} $ ) increase with the increase of superficial gas velocity (U G), while the mean circulation time (t c) decreases with the increase of superficial gas velocity. The mean circulation time between the aerobic zone (riser) and microaerophilic zone (downcomer) is a stronger function of the superficial gas velocity for the smaller openings (1/2 in.) between the two zones, while for the larger opening (1 in.) the mean circulation time is almost independent of U G for U G ≥ 0.023 m/s. The smaller openings between the two zones provide higher mass transfer coefficient and better zone generation which will contribute to improved performance of the system during treatment operations.  相似文献   

4.
Liquid circulation velocity was investigated in three concentric-tube airlift reactors of different scales (RIMP, V L =0.07 m3; RIS-1, V L =2.5 m3; RIS-2, V L =5.20 m3). The effects of top and bottom clearance and resistance in flow pathway at downcomer entrance on the riser liquid superficial velocity, the circulation time, the friction coefficient and flow radial profiles of the gas holdup and the liquid superficial velocity in riser, using water-air as a biphasic system, were studied. It was found that the riser liquid superficial velocity is affected by the analyzed geometrical parameters in different ways, depending on their effects on the pressure loss. The riser liquid superficial velocity, the friction coefficient and the parameters of the drift-flux model were satisfactorily correlated with the bottom spatial ratio (B), gas separation ratio (Y) and downcomer flow resistance ratio (A d /A D ), resulting empirical models, with correlation coefficients greater than 0.85.  相似文献   

5.
Mass transfer coefficients were measured in three concentric-tube airlift reactors of different scales (RIMP, V L =0.07 m3;RIS?1,V L =2.50 m3;RIS?2, V L =5.20 m3). The effects of top and bottom clearance and flow resistances at downcorner entrance were studied in water-air system. Experimental results show that h s ,h B and A d /A R ratio affect K L a values as a result of their influence on gas holdup and liquid velocity. The gas-liquid mass-transfer coefficients for all the geometric variables were successfully correlated as Sherwood number with Froude and Galilei numbers, the bottom spatial ratio (B=h B /D R ), the top spatial ratio , the gas separation ratio and the downcomer flow resistance ratio (R=A d /A R ). The proposed empirical model satisfactorily fitted the experimental data obtained in large airlift reactors and some data presented in literature.  相似文献   

6.
Liquid circulation velocity was studied in externalloop air-lift bioreactors of laboratory and pilot scale, respectively for different gas input rates, downcomer-to-riser cross-sectional area ratio, A D/AR and liquid phase apparent viscosities.It was found that, up to a gas superficial velocity in the riser v SGR 0.04 m/s the dependency of v SLR on v SGR is in the following form: v SLR = a v SGR b , with the exponent b being 0.40. Over this value of v SGR, only a small increase in liquid superficial velocity, v SLR is produced by an increase in v SGR. A D/AR ratio affects the liquid superficial velocity due to the resistance in flow and overall friction.For non-Newtonian viscous liquids, the circulation liquid velocity in the riser section of the pilot external-loop airlift bioreactor is shown to be dependent mainly on the downcomer-to-riser cross-sectional area ratio, A D/AR, the effective (apparent) liquid viscosity, eff and the superficial gas velocity, v SGR.The equation proposed by Popovic and Robinson [11] was fitted well, with an error of ± 20%.List of Symbols A D m2 downcomer cross-sectional area - A Rm2 riser cross-sectional area - a = coefficient in Eq. (7) - b = exponent in Eq. (7) - c s m–1 Coefficient in Eq. (3) - D D m downcomer diameter - D R m riser diameter - g m2/s gravitational acceleration - H D m dispersion height - H L m ungassed liquid height - K Pa s n consistency index - K B = friction factor at the bioreactor bottom - K F = friction factor - K T = friction factor at the bioreactor top - V L m3 liquid volume in the bioreactor - V D m3 liquid volume in downcomer - V R m3 liquid volume in riser - v LDm/s downcomer linear liquid velocity - v LR m/s riser linear liquid velocity - v SGR m/s riser superficial liquid velocity - v SLR m/s riser superficial liquid velocity - s–1 shear rate - GD = downcomer gas holdup - GR = riser gas holdup - eff Pa s effective (apparent) viscosity - Pa shear stress The authors wish to thank Mrs. Rodica Roman for the help in experimental data collection and to Dr. Stefanluca for the financial support.  相似文献   

7.
The specific interfacial areas in two external-loop airlift bioreactors of laboratory and pilot scale were determined, mainly by the chemical reaction method (sulphite oxidation). The parameter studied in water/salt and starch/salt solutions was greately affected by gas superficial velocity, A D /A R ratio, by H R ?H D /H D ratio and η ap , respectively. Correlations for the specific interfacial area in the two systems, considering the effects of the above-mentioned parameters, were proposed.  相似文献   

8.
The paper presents a model of the motion of a particle subjected to several transport processes in connection with mixing in two phase flow. A residence time distribution technique coupled with a one-dimensional dispersion model was used to obtain the axial dispersion coefficient in the liquid phase, Dax. The proposed model of Dax for an external-loop airlift bioreactor is based on the stochastic analysis of the two-phase flow in a cocurrent bubble column and modified for the specific flow in the airlift reactor. The model takes into account the riser gas superficial velocity, the riser liquid superficial velocity, the Sauter bubble diameter, the riser gas hold-up, the downcomer-to-riser cross sectional area ratio. The proposed model can be applied with an average error of ᆨ.  相似文献   

9.
Concentric-tube airlift bioreactors   总被引:2,自引:0,他引:2  
Gas holdup investigations were performed in three concentric-tube airlift reactors of different scales of operation (RIMP: 0.070 m3; RIS-1: 2.5 m3; RIS-2: 5.2 m3; nominal volumes). The influences of the top and bottom clearances and the flow resistances at the downcomer entrance were studied using tap water as liquid phase and air as gaseous phase, at atmospheric pressure. It was found that the gas holdup in the individual zone of the reactor: riser, downcomer and gas-separator, as well as that in the overall reactor is affected by the analyzed geometrical parameters in different ways, depending on their effects on liquid circulation velocity. Gas holdup was satisfactorily correlated with Fr, Ga, bottom spatial ratio (B), top spatial ratio (T), gas separation ratio (Y) and downcomer flow resistance ratio (A d /A R ). Correlations are presented for gas holdup in riser, downcomer, gas separator and for the total gas holdup in the reactor. All the above stressed the importance of the geometry in dynamic behaviour of airlift reactors.  相似文献   

10.
Rice straw is a by-product of rice production, and a great bioresource as raw biomass material for manufacturing value-adding protein for animal feedstock, which has been paid more and more attention. In the present work, utilizing rice straw hydrolysate as a substrate for microbial biomass production in 11.5L external-loop airlift bioreactors was investigated. Rice straw hydrolysate obtained through acid-hydrolyzing rice straw was used for the culture of yeast Candida arborea AS1.257. The influences of gas flow rate, initial liquid volume, hole diameter of gas sparger and numbers of sieve plates on microbial biomass production were examined. The best results in the external-loop airlift bioreactor were obtained under 9.0 L initial liquid volume, 1.1 (v/v)/min gas flow rate during culture time of 0-24 h and 1.4 (v/v)/min gas flow rate of 24-48 h at 29+/-1 degrees C. The addition of the sieve plates in the riser of the external-loop airlift bioreactor increased productivity. After 48 h, under optimized operation conditions, crude protein productivity with one sieve and two sieves were 13.6 mg/mL and 13.7 mg/mL, respectively, comparing 12.7 mg/mL without sieves in the airlift bioreactor and 11.7 mg/mL in the in the 10-L mechanically stirred tank bioreactor. It is feasible to operate the external-loop airlift bioreactors and possible to reduce the production cost for microbial biomass production from the rice straw hydrolysate.  相似文献   

11.
Axial dispersion of the liquid phase was investigated in a concentric-tube airlift bioreactor (RIMP: V L=0.70?m3) as a whole and in the separate zones (riser, downcomer, gas-separator) using the axial dispersion model. The axial dispersion number Bo and the axial dispersion coefficient, D ax were determined from the output curves to an initial Dirac pulse, using the tracer response technique. They were analyzed in relation to process and geometrical parameters, such as: gas superficial velocity, νSGR; top clearance, h S; bottom clearance, h B, and resistances at downcomer entrance expressed as A d/A R ratio. Correlations between Bodenstein numbers in the overall bioreactor and riser and downcomer sections (BoT,BoR,BoD) and the geometrical and process parameters were developed, which can allow to assess the complex influence of these parameters on liquid axial dispersion.  相似文献   

12.
Gas holdup and liquid circulation velocity meassurements were made for a range of liquid viscosities in a 22 l external loop airlift column and 250 l pilot-scale concentric cylinder airlift bioreactor. The results showed that for a fixed superficial gas velocity, liquid circulation velocity decreased monotonically with increasing liquid viscosity. The gas holdup for a fixed gas flow rate showed an initial increase with liquid viscosity followed by a decrease when liquid viscosity increased beyond a critical value. These observations could not be described satisfactorily using the available models of gas holdup and liquid circulation.List of Symbols U sg m/s Superficial gas velocity - U sl m/s Superficial liquid velocity in the riser Greek Letters Pas Liquid viscosity - g Gas holdup in the riser  相似文献   

13.
Gas holdup investigation was performed in two external-loop airlift bioreactors of laboratory (V L =1.189·10?3? 1.880·10?3 m3; H R =1.16 ? 1.56 m; H D = 1.10 m; A D /A R = 0.111 ? 1.000) and pilot scale (V L =0.157?0.170 m3; H R =4.3?4.7 m; H D =4.0?4.4 m;A D /A R =0.04?0.1225), respectively, using as liquid phase non-Newtonian starch solutions of different concentration with K=0.061?3.518 Pa sn and n=0.86?0.39 and fermentation broths of P. chrysogenum, S. griseus, S. erythreus, B. licheniformis and C. acremonium at different hours since inoculation and from different batches. The influence of bioreactor geometry, liquid properties and the amount of introduced compressed air was investigated. The effect of sparger design on gas holdup was found to be negligible. It was found that gas holdup depends on the flow media index, ?GR decreasing with the increase of liquid pseudoplasticity, A D /A R ratio and H R /H D ratio. The experimental data are in agreement with those presented in literature by Popovic and Robinson, which take into account liquid properties, geometric parameters and gas superficial velocity, with a maximum error of ±30%. It was obtained a correlation for gas holdup estimation taking into account the non-Newtonian behaviour of the fermentation broths and the dry weight of the solid phase, as well. The concordance between the experimental data and those calculated with the proposed correlation was good, with a maximum error of ±17%. Also, a dimensionless correlation for gas holdup involving superficial velocities of gas and liquid, cross sectional areas ratio, dispersion height to riser diameter ratio, as well as Froude and Morton numbers, was obtained.  相似文献   

14.
Bacillus subtilis AS1.398 was cultivated in a 11.5-L total volume external-loop airlift bioreactor with a low height-to-diameter ratio of 2.9 and a riser-to-downcomer diameter ratio of 6.6 for the production of protease from crude substrates with dregs. The influence of aeration rate, liquid volume, and sparger hole diameter on protease production was investigated. An average of 8197 u/mL protease activity was obtained after a total fermentation time of 32 h in the external-loop airlift bioreactor with a liquid volume of 8.5 L, air flow rate of 1.5 vvm, and sparger hole diameter of 1.5 mm. The addition of one stainless steel sieve plate in the riser of the airlift bioreactor increased productivity of protease. After 32 h of fermentation, an average of 8718 u/mL protease activity was achieved in the external-loop airlift bioreactor with one sieve plate and an air flow rate of 1.2 vvm, liquid volume of 8.5 L, and gas sparger hole diameter of 1.5 mm. This was 9.0% higher than the typical averages of about 8000 u/mL protease activity in the mechanically stirred tank bioreactors of the enzyme factory using the same microorganism. It is possible to make a scale-up of the external-loop airlift bioreactor and feasible to operate it for production of protease from crude substrate with dregs.  相似文献   

15.
The influence of short draft tubes covered by perforated plates on gas-liquid mass transfer was examined in external-loop airlift bioreactors. The volumetric mass transfer coefficients in a model external-loop airlift bioreactor were measured with water and non-Newtonian media. It was found that introduction of draft tubes covered with perforated plates in the riser significantly improved the mass transfer rate, particularly in higher viscous non-Newtonian fermentation media. The enhancement of mass transfer rate might be due mainly to an increase in bubble coalescence and redispersion. (c) 1994 John Wiley & Sons, Inc.  相似文献   

16.
Recently, a microchannel flow analyzer (MC-FAN) has been used to study the flow properties of blood. However, the correlation between blood passage time measured by use of the MC-FAN and hemorheology has not been clarified. In this study, a simple model is proposed for estimation of liquid viscosity from the passage time t p of liquids. The t p data for physiological saline were well represented by the model. According to the model, the viscosity of Newtonian fluids was estimated reasonably well from the t p data. For blood samples, although the viscosity $ \eta_{\text{mc}} $ estimated from t p was shown to be smaller than the viscosity $ \eta_{{450{\text{s}}^{ - 1} }} $ measured by use of a rotatory viscometer at a shear rate of 450 s?1, $ \eta_{\text{mc}} $ was correlated with $ \eta_{{450{\text{s}}^{ - 1} }} $ . An empirical equation for estimation of $ \eta_{{450{\text{s}}^{ - 1} }} $ from $ \eta_{\text{mc}} $ of blood samples is proposed.  相似文献   

17.
A new model of gas hold-up is proposed for external-loop airlift bioreactors. It is based on the similarity between the liquid circulation due to the local variation of gas hold-up in airlift bioreactors and the natural convection due to temperature difference. The model is developed to include the case of non-Newtonian fermentation media which are involved in many industrially bioprocesses. The capability of the model is examined using a wide range of experimental results including the present data. Reasonable agreement is obtained between the proposed model and the experimental data both for Newtonian and non-Newtonian media.  相似文献   

18.
Results of pilot plant studies using an external-loop airlift bioreactor (170 l fermentation volume, liquid height-to-riser diameter: 27, loop-to-tower cross-section-area: 0.1225) have proven the relative merits of such a system in the bacitracin biosynthesis produced by the Bacillus licheniformis submerged aerobic cultivation. The results were compared to those obtained in a pilot-scale stirred-tank bioreactor with the same values of kLa. Excepting the aeration rate of 0.2 vvm, the fermentation process performed at 0.5 vvm and 1/0 vvm, respectively, unfolded similarly in the two fermentation devices with respect to the cell mass production, substrate utilization and bacitracin production during the fermentation process. In the riser section of the airlift bioreactor, the dissolved oxygen levels were higher, while in the downcomer section they were lower than those realized in the stirred tank bioreactor. Power requirements of the airlift fermenter were by 17–64% lower than those for a mechanically agitated system, depending on the aeration rates, which led to an important energy saving. Moreover, the lack of mechanical devices in the airlift system provides safety and a more gentle environment for the cultivation of microorganisms.  相似文献   

19.
Measurements of local gas phase characteristics are obtained in an external-loop airlift reactor filled with newtonian or viscous non-newtonian liquids. A double-optical fiber probe technique is used. It allows the determination of the axial and radial profiles of gas hold-up, bubbling frequency, bubble size and velocity. In the case of air-water system, the results show a strong effect of radial liquid velocity variation on the gas flow characteristics at the bottom of the riser. In the case of highly viscous non-newtonian solution, the gas flow is strongly affected by the gas distribution just above the gas sparger. This study also points out the bubble coalescence and the break-up phenomena in different liquids and levels in the reactor. Furthermore, the local measurements of bubble size and velocity allows to gain more detailed information on the dynamics of the bubble-flow and shows a tendency of large bubbles to circulate in the column center.  相似文献   

20.
Two chemicals,A andB, are allowed to diffuse together and a reaction described by $$A + B\mathop \rightleftharpoons \limits_{K_{ - 1} }^{K_1 } C$$ is allowed to proceed. This system is described mathematically by a system of partial differential equations. A numerical procedure is presented to find the rate constants ofK 1 andK ?1. A systematic analysis of the effects of errors is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号