首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Keratin intermediate filaments (IF) are obligate heteropolymers containing equal amounts of type I and type II keratin. We have previously shown that microinjected biotinylated type I keratin is rapidly incorporated into endogenous bundles of keratin IF (tonofilaments) of PtK2 cells. In this study we show that the earliest steps in the assembly of keratin subunits into tonofilaments involve the extremely rapid formation of discrete aggregates of microinjected keratin. These are seen as fluorescent spots containing both type I and type II keratins within 1 min post-injection as determined by double label immunofluorescence. These observations suggest that endogenous type II keratin subunits can be rapidly mobilized from their endogenous state to form complexes with the injected type I protein. Furthermore, confocal microscopy and immunogold electron microscopy suggest that the type I-type II keratin spots from in close association with the endogenous keratin IF network. When the biotinylated protein is injected at concentrations of 0.3-0.5 mg/ml, the organization of the endogenous network of tonofilaments remains undisturbed during incorporation into tonofilaments. However, microinjection of 1.5-2.0 mg/ml of biotinylated type I results in significant alterations in the organization and assembly state of the endogenous keratin IF network soon after microinjection. The results of this study are consistent with the existence of a state of equilibrium between keratin subunits and polymerized keratin IF in epithelial cells, and provide further proof that IF are dynamic elements of the cytoskeleton of mammalian cells.  相似文献   

2.
The cloning of three intermediate filament proteins expressed at the gastrula stage (kl, Y1, X1) extends the size of the IF multigene family of Branchiostoma to at least 13 members. This is one of the largest protein families established for the lancelet. Sequence comparisons indicate five keratin orthologs, three of type I (E1, k1, Y1) and two of type II (E2, D1). This assignment is confirmed by the obligatory heteropolymeric polymerisation behaviour of the recombinant proteins. In line with the hetero-coiled-coil principle IF are formed by any stoichiometric mixture of type I and II keratin orthologs. In spite of the strong sequence drift chimeric IF are formed between K8, a human keratin II, and two of the lancelet type I keratins. We discuss whether the remaining 8 IF proteins reflect three additional and potentially cephalochordate-specific subfamilies. The tissue-specific expression patterns of the 5 keratins and some other IF proteins were analysed by immunofluorescence in the adult. Keratins are primarily present in ectodermally derived tissues. Developmental control of the expression of some IF proteins is observed, but three keratins (k1, Y1, D1) and an additional IF protein (X1) detected at the gastrula stage are expressed throughout the life cycle.  相似文献   

3.
Vimentin and keratin are coexpressed in many cells, but they segregate into two distinct intermediate filament (IF) networks. To understand the molecular basis for the sorting out of these IF subunits, we genetically engineered cDNAs encoding hybrid IF proteins composed of part vimentin and part type I keratin. When these cDNAs were transiently expressed in cells containing vimentin, keratin, or both IFs, the hybrid IF proteins all recognized one or the other or both networks. The ability to distinguish networks was dependent upon which segments of IF proteins were present in each construct. Constructs containing sequences encoding either helix 1B or helix 2B seemed to be the most critical in conferring IF recognition. At least for type I keratins, recognition was exerted at the level of dimer formation with wild-type type II keratin, as demonstrated by anion exchange chromatography. Interestingly, despite the fact that swapping of helical domains was not as deleterious to IF structure/function as deletion of helical domains, keratin/vimentin hybrids still caused structural aberrations in one or more of the cytoplasmic IF network. Thus, sequence diversity among IF proteins seems to influence not only coiled-coil but also higher ordered associations leading to 10-nm filament formation and/or IF interactions with other cellular organelles/proteins.  相似文献   

4.
From the nucleotide sequences of specific cDNA clones, we present partial amino acid sequences (75-90% of the total) of 67-kDa type II keratin subunits expressed in terminally differentiating mouse and human epidermis. Analysis of the sequence information reveals that their secondary structures conform to the pattern common for all intermediate filament (IF) subunits. Together with the previously published sequence of the mouse 59-kDa type I keratin (Steinert, P. M., Rice, R. H., Roop, D. R., Trus, B. L., and Steven, A. C. (1983) Nature 302, 794-800) these data allow us to make comparisons between two keratins which are coexpressed in an epithelial cell type and which coassemble into the same IF. Moreover, these comparisons suggest a systematic plan for the general organization of the end domains of other keratin subunits. We postulate that each end domain consists of a set of subdomains which are distributed with bilateral symmetry with respect to the central alpha-helical domain. Type II (but not type I) keratins contain short globular sequences, H1 and H2, immediately adjacent to the central domain, that have been conserved in size and sequence and which account for most of the difference in mass between coexpressed type II and type I keratins. These are flanked by subdomains V1 and V2 that are highly variable in both length and sequence, often contain tandem peptide repeats, and are conspicuously rich in glycines and/or serines. At the termini are strongly basic subdomains (N and C, respectively) that are variable in sequence. Among keratins of a given type, their variability in mass appears to reside in the size of their V1 and V2 subdomains. However, coexpressed type I and type II keratins have generally similar V1 and/or V2 sequences. By virtue of the ease with which large portions of these subdomain sequences can be removed from intact keratin IF by limited proteolysis, we hypothesize that they lie on the periphery of the IF where they participate in interactions with other constituents of epithelial cells.  相似文献   

5.
Monoclonal antibodies specific for vimentin (V9), keratin 7 (CK 7) and keratin 18 (CK5) have been microinjected into three human epithelial cell lines: HeLa, MCF-7 and RT-4. The effect of the injection on other keratin polypeptides and vimentin filaments has been observed by double label immunofluorescence and in some instances by immunoelectron microscopy using gold labels of different sizes. Microinjection of V9 into HeLa cells causes the vimentin to collapse into a perinuclear cap leaving the keratin filaments unaffected. Injection of CK5 does not affect the vimentin filaments but disrupts the keratin filaments revealing keratin aggregates similar to those seen in some epithelial cell lines during mitosis. The keratin aggregates obtained after microinjection in HeLa contain the keratins 8 and 18 and probably also other keratins, as no residual keratin filaments are observed with a keratin polyclonal antibody of broad specificity. Aggregates in mitotic HeLa cells contain at least the keratins 7, 8, and 18. In MCF-7 cells keratins 8, 18, and 19 are observed in the aggregates seen 3 h after microinjection which, however, show a different morphology from those seen in HeLa cells. In MCF-7 cells a new keratin filament is built within 6 h after the injection which is composed mainly of keratin 8 and 19. The antibody-complexed keratin 18 remains in spherical aggregates of different size. The results suggest that in HeLa cells vimentin and keratin form independent networks, and that individual 10 nm filaments in epithelial cell lines can contain more than two keratins.  相似文献   

6.
We analyzed the draft genome of the cephalochordate Branchiostoma floridae (B. floridae) for genes encoding intermediate filament (IF) proteins. From 26 identified IF genes 13 were not reported before. Four of the new IF genes belong to the previously established Branchiostoma IF group A, four to the Branchiostoma IF group B, one is homologous to the type II keratin E2 while the remaining four new IF sequences N1 to N4 could not be readily classified in any of the previously established Branchiostoma IF groups. All eleven identified A and B2-type IF genes are located on the same genomic scaffold and arose due to multiple cephalochordate-specific duplications. Another IF gene cluster, identified in the B. floridae genome, contains three keratins (E1, Y1, D1), two keratin-like IF genes (C2, X1), one new IF gene (N1) and one IF unrelated gene, but does not show any similarities to the well defined vertebrate type I or type II keratin gene clusters. In addition, some type III sequence features were documented in the new IF protein N2, which, however, seems to share a common ancestry with the Branchiostoma keratins D1 and two keratin-related genes C. Thus, a few type I and type II keratin genes existed in a common ancestor of cephalochordates and vertebrates, which after separation of these two lineages gave rise to the known complexities of the vertebrate cytoplasmic type I–IV IF proteins, as well as to the multiple keratin and related IF genes in cephalochordates, due to multiple gene duplications, deletions and sequence divergences.  相似文献   

7.
Two novel cytoplasmic intermediate filament (IF) proteins (C and D) from the tunicate (urochordate) Styela are characterised as putative keratin orthologs. The coexpression of C and D in all epidermal cells and the obligatory heteropolymeric IF assembly of the recombinant proteins argue for keratin orthologs, but the sequences do not directly reveal which protein behaves as a keratin I or II ortholog. This problem is solved by the finding that keratin 8, a type II keratin from man or Xenopus, forms chimeric IF when mixed with Styela D. Mutant proteins of Styela D and keratin 8 with a single cysteine in equivalent positions show that these chimeric IF are, like vertebrate keratin filaments, based on the hetero coiled coil. We propose that Styela D retains, in spite of its strong sequence drift, important molecular features of type I keratins. By inference Styela C reflects a type II ortholog. We discuss that type I to III IF proteins are expressed along the chordate branch of metazoa.  相似文献   

8.
Of the 54 human keratins, five members have, at present, only been characterized at the gene level. In this study we have investigated the expression patterns of keratin K80, whose gene is located at the centromeric end of the type II keratin gene domain. K80 possesses a number of highly unusual properties. Structurally, it is distinctly closer to type II hair keratins than to type II epithelial keratins. Nonetheless, it is found in virtually all types of epithelia (stratified keratinizing/non-keratinizing, hard-keratinizing, as well as non-stratified tissues, and cell cultures thereof). This conspicuously broad expression range implies an unprecedented in vivo promiscuity of K80, which involves more than 20 different type I partners for intermediate filament (IF) formation. Throughout, K80 expression is related to advanced tissue or cell differentiation. However, instead of being part of the cytoplasmic IF network, K80 containing IFs are located at the cell margins close to the desmosomal plaques, where they are tightly interlaced with the cytoplasmic IF bundles abutting there. In contrast, in cells entering terminal differentiation, K80 adopts the “conventional” cytoplasmic distribution. In evolutionary terms, K80 is one of the oldest keratins, demonstrable down to fish. In addition, KRT80 mRNA is subject to alternative splicing. Besides K80, we describe a smaller but fully functional splice variant K80.1, which arose only during mammalian evolution. Remarkably, unlike the widely expressed K80, the expression of K80.1 is restricted to soft and hard keratinizing epithelial structures of the hair follicle and the filiform tongue papilla.  相似文献   

9.
Keratins I and II form the largest subgroups of mammalian intermediate filament (IF) proteins and account as obligatory heteropolymers for the keratin filaments of epithelia. All human type I genes except for the K18 gene are clustered on chromosome 17q21, while all type II genes form a cluster on chromosome 12q13, that ends with the type I gene K18. Highly related keratin gene clusters are found in rat and mouse. Since fish seem to lack a keratin II cluster we screened the recently established draft genomes of a bird (chicken) and an amphibian (Xenopus). The results show that keratin I and II gene clusters are a feature of all terrestrial vertebrates. Because hair with its multiple hair keratins and inner root sheath keratins is a mammalian acquisition, the keratin gene clusters of chicken and Xenopus tropicalis have only about half the number of genes found in mammals. Within the type I clusters all genes have the same orientation. In type II clusters there is a rare gene of opposite orientation. Finally we show that the genes for keratins 8 and 18, which are the first expression pair in embryology, are not only adjacent in mammals, but also in Xenopus and three different fish. Thus neighboring K8 and K18 genes seem a feature shared by all vertebrates. In contrast to the two well defined keratin gene clusters of terrestrial vertebrates, three teleost fish show an excess of type I over type II genes, the lack of a keratin type II gene cluster and a striking dispersal of type I genes, that are probably the result of the teleost-specific whole genome duplication followed by a massive gene loss. This raises the question whether keratin gene clusters extend beyond the ancestral bony vertebrate to cartilage fish and lamprey. We also analyzed the complement of non-keratin IF genes of the chicken. Surprisingly, an additional nuclear lamin gene, previously overlooked by cDNA cloning, is documented on chromosome 10. The two splice variants closely resemble the lamin LIII a + b of amphibia and fish. This lamin gene is lost on the mammalian lineage.  相似文献   

10.
I Hanukoglu  E Fuchs 《Cell》1983,33(3):915-924
We present the cDNA and amino acid sequences of a cytoskeletal keratin from human epidermis (Mr = 56K) that belongs to one of the two classes of keratins (Type I and Type II) present in all vertebrates. In these two types of keratins the central approximately 300 residue long regions share approximately 30% homology both with one another and with the sequences of other IF proteins. Within this region, all IF proteins are predicted to contain four helical domains demarcated from one another by three regions of beta-turns. The amino and carboxy termini of the Type II keratin are very different from those of microfibrillar keratins and other nonkeratin IF proteins. However, they contain unusual glycine-rich tandem repeats similar to the amino terminus of the Type I keratin. Thus the size heterogeneity among keratins appears to be a result of differences in the length of the terminal ends rather than the structurally conserved central region.  相似文献   

11.
The "thread keratins (TK)" alpha and gamma so far have been considered highly specialized intermediate filament (IF) proteins restricted to hagfish. From lamprey, we now have sequenced five novel IF proteins closely related to TKalpha and TKgamma, respectively. Moreover, we have detected corresponding sequences in EST and genomic databases of teleosts and amphibians. The structure of the TKalpha genes and the positions of their deduced amino acid sequences in a phylogenetic tree clearly support their classification as type II keratins. The genes encoding TKgamma show a structure typical for type III IF proteins, whereas their positions in phylogenetic trees favor a close relationship to the type I keratins. Considering that most keratin-like sequences detected in the lancelet also exhibit a gene structure typical for type III IF proteins, it seems likely that the keratin gene(s) originated from an ancient type III IF protein gene. According to EST analyses, the expression of the thread keratins in teleost fish and amphibians may be particularly restricted to larval stages, which, in conjunction with the observed absence of TKalpha and TKgamma genes in any of the available Amniota databases, indicates a thread keratin function closely related to larval development in an aquatic environment.  相似文献   

12.
Intermediate filaments (IF) have been recognized as ubiquitous components of the cytoskeletons of eukaryotic cells for 25 yr. Historically, the first IF proteins to be characterized were those from wool in the 1960s, when they were defined as low sulfur keratins derived from "microfibrils." These proteins are now known as the type Ia/type IIa trichocyte keratins that constitute keratin IF of several hardened epithelial cell types. However, to date, of the entire class of >40 IF proteins, the trichocyte keratins remain the only ones for which efficient in vitro assembly remains unavailable. In this paper, we describe the assembly of expressed mouse type Ia and type IIa trichocyte keratins into IF in high yield. In cross-linking experiments, we document that the alignments of molecules within reduced trichocyte IF are the same as in type Ib/IIb cytokeratins. However, when oxidized in vitro, several intermolecular disulfide bonds form and the molecular alignments rearrange into the pattern shown earlier by x-ray diffraction analyses of intact wool. We suggest the realignments occur because the disulfide bonds confer substantially increased stability to trichocyte keratin IF. Our data suggest a novel role for disulfide bond cross linking in stabilization of these IF and the tissues containing them.  相似文献   

13.
Two families of keratins, type I and type II, can be distinguished within the intermediate filament family of proteins, and at least 20 genes in the human genome code for the 20 known keratin proteins. In epithelial intermediate filaments, keratins from both families appear to be coordinately expressed. We have screened a library of human genomic DNA and have identified several cases of linkage among homologous and heterologous pairs of keratin genes. Genes coding for type I keratins were found linked to those coding for type II keratins. Linkage was discovered also among homologous genes coding for type I keratins and among genes encoding type II keratins. In addition, we found genes coding for glycine-rich keratins linked to genes coding for those that do not contain glycine-rich regions. Our results raise the possibility that all keratin genes are linked in a single region of the human genome.  相似文献   

14.
Recombinant DNA technology has been used to analyze the first step in keratin intermediate filament (IF) assembly; i.e., the formation of the double stranded coiled coil. Keratins 8 and 18, lacking cysteine, were subjected to site specific in vitro mutagenesis to change one amino acid in the same relative position of the alpha-helical rod domain of both keratins to a cysteine. The mutations lie at position -36 of the rod in a "d" position of the heptad repeat pattern, and thus air oxidation can introduce a zero-length cystine cross-link. Mutant keratins 8 and 18 purified separately from Escherichia coli readily formed cystine homodimers in 2 M guanidine-HCl, and could be separated from the monomers by gel filtration. Heterodimers with a cystine cross-link were obtained when filaments formed by the two reduced monomers were allowed to oxidize. Subsequent ion exchange chromatography in 8.5 M urea showed that only a single dimer species had formed. Diagonal electrophoresis and reverse phase HPLC identified the dimer as the cystine containing heterodimer. This heterodimer readily assembled again into IF indistinguishable from those obtained from the nonmutant counterparts or from authentic keratins. In contrast, the mixture of cystine-stabilized homodimers formed only large aberrant aggregates. However, when a reducing agent was added, filaments formed again and yielded the heterodimer after oxidation. Thus, the obligatory heteropolymer step in keratin IF assembly seems to occur preferentially at the dimer level and not during tetramer formation. Our results also suggest that keratin I and II homodimers, once formed, are at least in 2 M guanidine-HCl a metastable species as their mixtures convert spontaneously into heterodimers unless the homodimers are stabilized by the cystine cross-link. This previously unexpected property of homodimers explains major discrepancies in the literature on the keratin dimer.  相似文献   

15.
Lungfishes are possibly the closest extant relatives of the land vertebrates (tetrapods). We report here the cDNA and predicted amino acid sequences of 13 different keratins (ten type I and three type II) of the lungfish Protopterus aethiopicus. These keratins include the orthologs of human K8 and K18. The lungfish keratins were also identified in tissue extracts using two-dimensional polyacrylamide gel electrophoresis, keratin blot binding assays and immunoblotting. The identified keratin spots were analyzed by peptide mass fingerprinting which assigned seven sequences (inclusively Protopterus K8 and K18) to their respective protein spot. The peptide mass fingerprints also revealed the fact that the major epidermal type I and type II keratins of this lungfish have not yet been sequenced. Nevertheless, phylogenetic trees constructed from multiple sequence alignments of keratins from lungfish and distantly related vertebrates such as lamprey, shark, trout, frog, and human reveal new insights into the evolution of K8 and K18, and unravel a variety of independent keratin radiation events.  相似文献   

16.
The properties of keratin intermediate filaments (IFs) have been studied after transfection with green fluorescent protein (GFP)-tagged K18 and/or K8 (type I/II IF proteins). GFP-K8 and -K18 become incorporated into tonofibrils, which are comprised of bundles of keratin IFs. These tonofibrils exhibit a remarkably wide range of motile and dynamic activities. Fluorescence recovery after photobleaching (FRAP) analyses show that they recover their fluorescence slowly with a recovery t(1/2) of approximately 100 min. The movements of bleach zones during recovery show that closely spaced tonofibrils (<1 microm apart) often move at different rates and in different directions. Individual tonofibrils frequently change their shapes, and in some cases these changes appear as propagated waveforms along their long axes. In addition, short fibrils, termed keratin squiggles, are seen at the cell periphery where they move mainly towards the cell center. The motile properties of keratin IFs are also compared with those of type III IFs (vimentin) in PtK2 cells. Intriguingly, the dynamic properties of keratin tonofibrils and squiggles are dramatically different from those of vimentin fibrils and squiggles within the same cytoplasmic regions. This suggests that there are different factors regulating the dynamic properties of different types of IFs within the same cytoplasmic regions.  相似文献   

17.
Keratins from the living cell layers of human and neonatal mouse epidermis (prekeratins) have been compared to those from the stratum corneum (SC keratins). Human and mouse epidermis contained four prekeratins, two of each keratin subfamily: type II basic (pI 6.5-8.5; human 68 kDa, 60.5 kDa and mouse 67 kDa, 60 kDa) and type I acidic (pI 4.7-5.7; human 57 kDa, 51 kDa and mouse 58 kDa, 53 kDa,). While all four were present in equal amounts in adult human epidermis, two (67 kDa basic, 58 kDa acidic) were more prominent in neonatal mouse epidermis. Preliminary results with cell fractions (basal, spinous and granular) indicated that quantitative differences were a function of morphology, basal cells containing the smaller member of each subfamily and granular cells the larger. Mouse stratum corneum extracts contained four keratins (three in human): type II neutral-acidic (pI 5.7-6.7; human 65 kDa and mouse 64 kDa, 62 kDa) and type I acidic (pI 4.9-5.4; human 57.5 kDa, 55 kDa and mouse 58.5 kDa, 57.5 kDa). In both species, one-dimensional and two-dimensional peptide mapping (with V8 protease and trypsin respectively) indicated that while all four prekeratins were distinct gene products, similarities existed in the type II basic and the type I acidic keratin subfamilies. A strong homology also existed between type II SC keratins and the larger basic (type II) prekeratin (human 68 kDa and mouse 67 kDa) and between type I SC keratins and the larger acidic (type I) prekeratin (human 57 kDa and mouse 58 kDa). These results indicate a precursor-product relationship within each keratin subfamily, between SC keratins and the prekeratins abundant in the adjacent granular layer. This differentiation-related keratin processing was similar in mouse and human epidermis, and may represent a widespread phenomenon amongst keratinising epithelia.  相似文献   

18.
It has only recently been recognized that intermediate filaments (IFs) and their assembly intermediates are highly motile cytoskeletal components with cell-type- and isotype-specific characteristics. To elucidate the cell-type-independent contribution of actin filaments and microtubules to these motile properties, fluorescent epithelial IF keratin polypeptides were introduced into non-epithelial, adrenal cortex-derived SW13 cells. Time-lapse fluorescence microscopy of stably transfected SW13 cell lines synthesizing fluorescent human keratin 8 and 18 chimeras HK8-CFP and HK18-YFP revealed extended filament networks that are entirely composed of transgene products and exhibit the same dynamic features as keratin systems in epithelial cells. Detailed analyses identified two distinct types of keratin motility: (I) Slow (approximately 0.23 microm/min), inward-directed, continuous transport of keratin filament precursor particles from the plasma membrane towards the cell interior, which is most pronounced in lamellipodia. (II) Fast (approximately 17 microm/min), bidirectional and intermittent transport of keratin particles in axonal-type cell processes. Disruption of actin filaments inhibited type I motility while type II motility remained. Conversely, microtubule disruption inhibited transport mode II while mode I continued. Combining the two treatments resulted in a complete block of keratin motility. We therefore conclude that keratin motility relies both on intact actin filaments and microtubules and is not dependent on epithelium-specific cellular factors.  相似文献   

19.
We have identified a number of type I and type II keratins in the zebrafish Danio rerio by two-dimensional polyacrylamide gel electrophoresis, complementary keratin blot-binding assay and immunoblotting. These keratins range from 56 kDa to 46 kDa in molecular mass and from pH 6.6 to pH 5.2 in isoelectric point. Type II zebrafish keratins exhibit significantly higher molecular masses (56–52 kDa) compared with the type I keratins (50–48 kDa), but the isoelectric points show no significant difference between the two keratin subclasses (type II: pH 6.0–5.5; type I: pH 6.1–5.2). According to their occurrence in various zebrafish tissues, the identified keratins can be classified into “E” (epidermal) and “S” (simple epithelial) proteins. A panel of monoclonal anti-keratin antibodies has been used for immunoblotting of zebrafish cytoskeletal preparations and immunofluorescence microscopy of frozen tissue sections. These antibodies have revealed differential cytoplasmic expression of keratins; this not only includes epithelia, but also a variety of mesenchymally derived cells and tissues. Thus, previously detected fundamental differences in keratin expression patterns between higher vertebrates and a salmonid, the rainbow trout Oncorhynchus mykiss, also apply between vertebrates and the zebrafish, a cyprinid. However, in spite of notable similarities, trout and zebrafish keratins differ from each other in many details. The present data provide a firm basis from which the application of keratins as cell differentiation markers in the well-established genetic model organism, the zebrafish, can be developed.  相似文献   

20.
The human type II hair keratin subfamily consists of six individual members and can be divided into two groups. The group A members hHb1, hHb3, and hHb6 are structurally related, whereas group C members hHb2, hHb4, and hHb5 are rather distinct. Specific antisera against the individual hair keratins were used to establish the two-dimensional catalog of human type II hair keratins. In this catalog, hHb5 showed up as a series of isoelectric variants, well separated from a lower, more acidic, and complex protein streak containing isoelectric variants of hair keratins hHb1, hHb2, hHb3, and hHb6. Both in situ hybridization and immunohistochemistry on anagen hair follicles showed that hHb5 and hHb2 defined early stages of hair differentiation in the matrix (hHb5) and cuticle (hHb5 and hHb2), respectively. Although cuticular differentiation proceeded without the expression of further type II hair keratins, cortex cells simultaneously expressed hHb1, hHb3, and hHb6 at an advanced stage of differentiation. In contrast, hHb4, which is undetectable in hair follicle extracts and sections, could be identified as the largest and most alkaline member of this subfamily in cytoskeletal extracts of dorsal tongue. This hair keratin was localized in the posterior compartment of the tongue filiform papillae. Comparative analysis of type II with the previously published type I hair keratin expression profiles suggested specific, but more likely, random keratin-pairing principles during trichocyte differentiation. Finally, by combining the previously published type I hair keratin catalog with the type II hair keratin catalog and integrating both into the existing catalog of human epithelial keratins, we present a two-dimensional compilation of the presently known human keratins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号