首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L J Lis  V A Parsegian  R P Rand 《Biochemistry》1981,20(7):1761-1770
We have confirmed that CaCl2 swells the multilayer lattice formed by dipalmitolyphosphatidylcholine (DPPC) in an aqueous solution. Specifically, at room temperature 1 mM CaCl2 causes these lipid bilayers to increase their separation, dw, from 19 A in pure water to greater than 90 A. CaCl2 concentrations greater than 4 mM cause less swelling. We have measured the net repulsive force between the bilayers in 30 mM CaCl2 at T = 25 degrees C (below the acyl chain freezing temperature). For interbilayer separations between 30 and 90 A, the dominant repulsion between bilayers is probably electrostatic; Ca2+ binds to DPPc lecithin bilayers, imparting a charge to them. The addition of NaCl to CaCl2 solutions decreases this repulsion. For dw less than 20 A, the bilayer repulsion appears to be dominated by the "hydration forces" observed previously between both neutral and charged phospholipids. From the electrostatic repulsive force, we estimate the extent of Ca2+ binding to the bilayer surface. The desorption and bound Ca2+, apparent when bilayers are pushed together, is more rapid than one would expect if an association constant governed Ca2+ binding. The association affinity does not appear to be a fixed quantity but rather a sensitive function of ionic strength and bilayer separation.  相似文献   

2.
Interactions of divalent cations with phosphatidylserine bilayer membranes   总被引:3,自引:0,他引:3  
The interaction of divalent cations with a homologous series of diacylphosphatidylserines (diacyl-PS) has been studied by differential scanning calorimetry and X-ray diffraction. Hydrated di-C14-PS (DMPS) exhibits a gel leads to liquid-crystal bilayer transition at 39 degrees C (delta H = 7.2 kcal/mol of DMPS). With increasing MgCl2 concentration, progressive conversion to a phase exhibiting a high melting (98 degrees C), high enthalpy (delta H congruent to 11.0 kcal/mol of DMPS) transition is observed. Similar behavior is observed for DMPS with increasing CaCl2 concentration. In this case, the high-temperature transition of the Ca2+-DMPS complex occurs at approximately 155 degrees C and is immediately followed by an exothermic transition probably associated with PS decomposition. For di-C12-, di-C14-, di-C16- (DPPS), and di-C18-PS, the transition temperatures of the Ca2+-PS complexes are in the range 151-155 degrees C; only di-C10-PS exhibits a significantly lower value, 142 degrees C. A different pattern of behavior is exhibited by DPPS in the presence of Sr2+ or Ba2+, with transitions in the range 70-80 degrees C being observed. X-ray diffraction of the Ca2+-PS complexes at 20 degrees C provides evidence of structural homology. All Ca2+-PS complexes exhibit bilayer structures, the bilayer periodicity increasing linearly from 35.0 A for di-C10-PS to 52.5 A for di-C18-PS. Wide-angle X-ray diffraction data indicate that hydrocarbon chain "crystallization" occurs on Ca2+-PS complex formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Electrophoretic mobility and 31P NMR measurements were combined to test whether the combination of the Henry, Boltzmann and Grahame equations is capable of describing the adsorption of divalent cations to phosphatidylcholine membranes. Cobalt was chosen for this study because, of all the common divalent cations, its effects on the 31P NMR spectrum of phosphatidylcholine membranes are easiest to interpret. Both the 31P NMR data on the adsorption of cobalt and the zeta potential data calculated from the electrophoretic mobility in the presence of cobalt are well described by the combination of these three equations. Electrophoretic mobility measurements were also performed with a number of other divalent cations and the zeta potentials were, in all cases, well described by the combination of these three equations. The binding deduced from such measurements decreases in the sequence: Mn2+, Mg2+, Ca2+, Co2+, Ni2+, Sr2+, Ba2+. If we assume that a lipid molecule occupies an area of 60 Å2 and that there is a 1: 1 stoichiometry for the binding of the divalent ions to phosphatidylcholine, the dissociation constants are, respectively: 0.3, 1.0, 1.0, 1.2, 1.2, 2.8, 3.6 M.  相似文献   

4.
The Stern equation, a combination of the Langmuir adsorption isotherm, the Boltzmann relation, and the Grahame equation from the theory of the diffuse double layer, provides a simple theoretical framework for describing the adsorption of charged molecules to surfaces. The ability of this equation to describe the adsorption of divalent cations to membranes containing brain phosphatidylserine (PS) was tested in the following manner. Charge reversal measurements were first made to determine the intrinsic 1:1 association constants of the divalent cations with the anionic PS molecules: when the net charge of a PS vesicle is zero one-half of the available sites are occupied by divalent cations. The intrinsic association constant, therefore, is equal to the reciprocal of the divalent cation concentration at which the mobility of a PS vesicle reverses sign. The Stern equation with this association constant is capable of accurately describing both the zeta potential data obtained with PS vesicles at other concentrations of the divalent cations and the data obtained with with vesicles formed from mixtures of PS and zwitterionic phospholipids. Independent measurements of the number of ions adsorbed to sonicated PS vesicles were made with a calcium-sensitive electrode. The results agreed with the zeta potential results obtained with multilamellar vesicles. When membranes are formed at 20 degrees C in 0.1 M NaCl, the intrinsic 1:1 association constants of Ni, Co, Mn, Ba, Sr, Ca, and Mg with PS are 40, 28, 25, 20, 14, 12, and 8 M-1, respectively.  相似文献   

5.
The ability of the Stern equation to describe the adsorption of divalent cations to phosphatidylglycerol membranes was tested by combining 31P-NMR and electrophoretic mobility measurements. In 0.1 M sodium chloride both the 31P-NMR and the zeta potential data are well described by the Stern equation. 31P-NMR and 13C-NMR results indicate that cobalt forms inner-sphere complexes only with the phosphate group of phosphatidylglycerol molecules and that a substantial fraction of the adsorbed cobalt ions form outer-sphere complexes. Evidence is presented that suggests the alkaline earth cations also bind to phospholipids mainly by forming outer sphere complexes. Electrophoretic mobility measurements were performed with several different divalent cations. In all cases the zeta potentials in 0.1 M sodium chloride were well described by the Stern equation. The intrinsic 1 : 1 association constants (M?1) for the phosphatidylglycerol complexes decreased in the sequence: Mn2+, 11.5; Ca2+, 8.5; Ni2+, 7.5; Co2+, 6.5; Mg2+, 6.0; Ba2+, 5.5 and Sr2+, 5.0.  相似文献   

6.
The molecular structure of the 2:2 complex of the cyclohexadepsipeptide antibiotic beauvericin with barium picrate has been determined by X-ray crystallography. The structure serves to confirm previous observations on the bimolecular behavior of beauvericin and of the ions transported by beauvercin. The intimate involvement of the anions in the coordination of the barium also explains observations that the cation specificity of beauvericin in membrane transport depends on the species of anions present.  相似文献   

7.
It has been postulated that sulphatides may be the K+ binding site of the sodium pump. In order to test this hypothesis we studied the binding of K+ to bilayer membranes containing sulphatides or phosphatidylserine. The adsorption constants of Na+, K+ and Ca2+ to planar bilayers containing these acidic lipids were determined from changes in the electrostatic potential at the membrane surface. Our results indicate that univalent cations adsorb weakly to both lipids and Ca2+ binds more strongly. The sequence of ion binding was Ca2+ greater than Na+ greater than K+. These results indicate that K+ does not bind specifically to sulphatides or phosphatidylserine and rule out the proposal that sulphatides by themselves provide the K+ binding site of the sodium pump.  相似文献   

8.
It has been shown that ionophore of bivalent cations (IBC) isolated from fatless, subjected to partial triptic hydrolysis cattle heart or liver mitochondria decreases BPM resistance inducing Ca2+ conductivity. Ions of lanthane in micromolar concentrations decrease calcium conductivity induced with IBC. When ten-fold gradient in Ca2+ was created on BPM the intitiation of the membrane potential fo 9-11 mV was observed. The role fo IBC and water soluble factors binding Ca2+ with high affinity, in the mitochrondial mechanism of Ca2+ translocation is discussed.  相似文献   

9.
Following the initiation of development, amoebae of Dictyostelium discoideum aggregate chemotactically toward cyclic AMP (cAMP). Adenyl cyclase, cAMP phosphodiesterase, and cAMP binding sites all increase 20--40 fold during the first few hours of development. It has been shown that addition of 1 mM EDTA and 5 mM MgCl2 accelerates the aggregation process. Likewise, the calcium ionophore, A23187, leads to precocious aggregation while 4 X 10(-5) M progesterone considerably delays it. These treatments have now been shown to result in increased accumulation of adenyl cyclase in the case of EDTA and Mg2+ or the ionophore and greatly decreased accumulation in the case of the steroid. Treatment with EDTA and Mg2+ or the ionophore has been shown not only to accelerate aggregation in wild-type amoebae but to overcome complete blocks to aggregation in certain mutant strains. We have found that addition of Mn2+ will also permit aggregation of mutant cells otherwise unable to aggregate. This divalent ion, unlike EDTA and Mg2+ or the ionophore, was shown to directly stimulate adenyl cyclase. Calcium ions were also found to affect the enzyme such that at Ca2+ concentrations found within the cells the great majority of the activity is inhibited. Manganese ions can overcome the inhibition by Ca2+. These findings show that conditions which stimulate aggregation result in increased activity of adenyl cyclase either by increased accumulation of the enzyme or by increased activity of the available enzyme, and support the proposed central role of adenyl cyclase in aggregation.  相似文献   

10.
Itracellular injections of Mg into cat spinal motoneurones have a depolarizing action, associated with a fall in input conductance, and depression of the postspike hyperpolarizing after-potential (a.h.p.) as well as its underlying conductance increase. There is also an increase in excitability, sometimes leading to outright discharge, and a change in the current-firing relation: the normal primary range is largely abolished and the firing appears to have the characteristics of the normal secondary range. Intracellular effects of Mg are thus mainly opposite to those of Ca, possibly owing to competition at sites where Ca activates K channels. Intracellular injections of Mn also tend to depress the a.h.p. but have relatively little effect on resting potential and conductance, or action potentials. Co also depresses the a.h.p. but has a more pronounced depolarizing action, and produces particularly strong depression of action potentials. By contrast intracellular Sr tends to raise the membrane conductance and has a mild hyperpolarizing effect. During the injection of Sr, a.h.p's are depressed but this is followed by a rebound of increased a.h.p. amplitude and conductance. Unlike the other divalent cations tested, Sr strongly depressed excitatory postsynaptic potentials. In most respects Sr appears to behave like Ca.  相似文献   

11.
Fusogenic capacities of divalent cations and effect of liposome size   总被引:3,自引:0,他引:3  
J Bentz  N Düzgüne? 《Biochemistry》1985,24(20):5436-5443
The initial kinetics of divalent cation (Ca2+, Ba2+, Sr2+) induced fusion of phosphatidylserine (PS) liposomes, LUV, is examined to obtain the fusion rate constant, f11, for two apposed liposomes as a function of bound divalent cation. The aggregation of dimers is rendered very rapid by having Mg2+ in the electrolyte, so that their subsequent fusion is rate limiting to the overall reaction. In this way the fusion kinetics are observed directly. The bound Mg2+, which by itself is unable to induce the PS LUV to fuse, is shown to affect only the aggregation kinetics when the other divalent cations are present. There is a threshold amount of bound divalent cation below which the fusion rate constant f11 is small and above which it rapidly increases with bound divalent cation. These threshold amounts increase in the sequence Ca2+ less than Ba2+ less than Sr2+, which is the same as found previously for sonicated PS liposomes, SUV. While Mg2+ cannot induce fusion of the LUV and much more bound Sr2+ is required to reach the fusion threshold, for Ca2+ and Ba2+ the threshold is the same for PS SUV and LUV. The fusion rate constant for PS liposomes clearly depends upon the amount and identity of bound divalent cation and the size of the liposomes. However, for Ca2+ and Ba2+, this size dependence manifests itself only in the rate of increase of f11 with bound divalent cation, rather than in any greater intrinsic instability of the PS SUV. The destabilization of PS LUV by Mn2+ and Ni2+ is shown to be qualitatively distinct from that induced by the alkaline earth metals.  相似文献   

12.
Rat brain myelin, synaptosomal plasma membranes and synaptic vesicles were spin labelled with stearic acid nitroxide derivatives. Their electron spin resonance spectra were studied as a function of temperature and devalent ions (Ca2+ and Mg2+) concentrations. (1) Synaptosomal plasma membranes and synaptic vesicles show identical temperature variations of their order parameter (S = 0.58 at 35 degrees C and S = 0.72 AT 22 DEGREES C). Myelin appears more rigid (S = 0.66 at 35 degrees C and S = 0.76 at 22 degrees C). A discontinuity of the order parameter variation as a function of temperature, is observed between 14.5 degrees C and l9.5 degrees C with the three types of membranes. (2) The hydrophobic core of these membranes is very fluid. No transition temperature is observed. The measured values of the spin label rotation correlation times and rotational activation energies are 2.1 and 2.8 ns at 35 degrees C and 3.1 and 3.6 kcal/mol respectively for synaptosomal plasma membranes and myelin. (3) Ca2+ enhances the membrane rigidity (12+/-0.7% increase of the order parameter at 35 degrees C in the presence of 10(-3) M Ca2+) and increases the transition temperature. At a lower extend, similar effects are observed with Mg2+.  相似文献   

13.
For murine adenosine deaminase, we have determined that a single zinc or cobalt cofactor bound in a high affinity site is required for catalytic function while metal ions bound at an additional site(s) inhibit the enzyme. A catalytically inactive apoenzyme of murine adenosine deaminase was produced by dialysis in the presence of specific zinc chelators in an acidic buffer. This represents the first production of the apoenzyme and demonstrates a rigorous method for removing the occult cofactor. Restoration to the holoenzyme is achieved with stoichiometric amounts of either Zn2+ or Co2+ yielding at least 95% of initial activity. Far UV CD and fluorescence spectra are the same for both the apo- and holoenzyme, providing evidence that removal of the cofactor does not alter secondary or tertiary structure. The substrate binding site remains functional as determined by similar quenching measured by tryptophan fluorescence of apo- or holoenzyme upon mixing with the transition state analog, deoxycoformycin. Excess levels of adenosine or N6- methyladenosine incubated with the apoenzyme prior to the addition of metal prevent restoration, suggesting that the cofactor adds through the substrate binding cleft. The cations Ca2+, Cd2+, Cr2+, Cu+, Cu2+, Mn2+, Fe2+, Fe3+, Pb2+, or Mg2+ did not restore adenosine deaminase activity to the apoenzyme. Mn2+, Cu2+, and Zn2+ were found to be competitive inhibitors of the holoenzyme with respect to substrate and Cd2+ and Co2+ were noncompetitive inhibitors. Weak inhibition (Ki > or = 1000 microM) was noted for Ca2+, Fe2+, and Fe3+.  相似文献   

14.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

15.
Conditions of precipitation of nucleosome core particles (NCP) by divalent cations (Ca(2+) and Mg(2+)) have been explored over a large range of nucleosome and cation concentrations. Precipitation of NCP occurs for a threshold of divalent cation concentration, and redissolution is observed for further addition of salt. The phase diagram looks similar to those obtained with DNA and synthetic polyelectrolytes in the presence of multivalent cations, which supports the idea that NCP/NCP interactions are driven by cation condensation. In the phase separation domain the effective charge of the aggregates was determined by measurements of their electrophoretic mobility. Aggregates formed in the presence of divalent cations (Mg(2+)) remain negatively charged over the whole concentration range. They turn positively charged when aggregation is induced by trivalent (spermidine) or tetravalent (spermine) cations. The higher the valency of the counterions, the more significant is the reversal of the effective charge of the aggregates. The sign of the effective charge has no influence on the aspect of the phase diagram. We discuss the possible reasons for this charge reversal in the light of actual theoretical approaches.  相似文献   

16.
Differences in the kinetic properties of corn leaf phosphoenolpyruvate (PEP) carboxylase isoenzymes were found, depending on whether Mg2+ or Mn2+ was used as the metal cofactor of the reaction. Also, differences in kinetic constants with respect to Mg2+ and Mn2+ were noticed between the two isoenzymes which further differentiates the two proteins. The catalytic activity of the enzyme in the Mg2+-activated system was dependent on a PEP-Mg2+ complex and not on the concentration of free Mg2+ or free PEP. Kinetics in the presence of total Mg2+ and those of PEP-Mg2+ suggest a negative cooperative effect with respect to ligand binding with concurrent progressive substrate activation. Magnesium ions, thus, have a special regulatory role in the corn leaf PEP carboxylase reaction.  相似文献   

17.
Zinc binding to human alpha 2-macroglobulin was studied to assess its involvement in the structure and function alpha 2-macroglobulin. Equilibrium dialysis experiments indicated multiple classes of zinc-binding sites, the one of highest affinity having a site number of 20 and a Kd value of 8 X 10(-7) M. Native alpha 2-macroglobulin and alpha 2-macroglobulin-trypsin complexes bound comparable amount of zinc. The proteinase inhibitory activity of alpha 2-macroglobulin was not affected by zinc binding at physiological concentrations nor by the removal of zinc by EDTA. Above 25 microM zinc, alpha 2-macroglobulin activity decreased, although binding of [125I]trypsin was not affected. When nondenaturing gel electrophoresis was performed, the preparation of alpha 2-macroglobulin migrated as half-molecules at increasing zinc concentration. Experiments with other divalent cations correlated decreases in alpha 2-macroglobulin activity with apparent dissociation of the alpha 2-macroglobulin tetramer in the presence of copper and mercury, but not barium, cadmium or nickel. While zinc binding to alpha 2-macroglobulin does not function in proteinase inhibition, it might be involved in zinc transport in vivo. At nonphysiological concentrations, zinc and other divalent cations are useful as probes of protein quaternary structure.  相似文献   

18.
Summary Fusion of phosphatidylserine vesicles induced by divalent cations, temperature and osmotic pressure gradients across the membrane was studied with respect to variations in vesicle size. Vesicle fusion was followed by two different methods: 1) the Tb/DPA fusion assay, whereby the fluorescent intensity upon mixing of the internal aqueous contents of fused lipid vesicles was monitored, and 2) measurement of the changes in turbidity of the vesicle suspension due to vesicle fusion. It was found that the threshold concentration of divalent cations necessary to induce vesicle fusion depended on the size of vesicles; as the diameter of the vesicle increased, the threshold value increased and the extent of fusion became less. For the osmotic pressure-induced vesicle fusion, the larger the diameter of vesicles, the smaller was the osmotic pressure gradient required to induce membrane fusion. Divalent cations, temperature increase and vesicle membrane expansion by osmotic pressure gradient all resulted in increase in surface energy (tension) of the membrane. The degree of membrane fusion correlated with the corresponding surface energy changes of vesicle membranes due to the above fusion-inducing agents. The increase in surface energy of 9.5 dyn/cm from the reference state corresponded to the threshold point of phosphatidylserine membrane fusion. An attempt was made to explain the factors influencing fusion phenomena on the basis of a single unifying theory.  相似文献   

19.
Daptomycin, a cyclic anionic lipopeptide antibiotic, whose three-dimensional structure was recently solved using solution state NMR (Ball et al. 2004; Jung et al. 2004; Rotondi and Gierasch 2005), requires calcium for function. To date, the exact nature of the interaction between divalent cations, such as Ca2+ or Mg2+, has not been fully characterized. It has, however, been suggested that addition of Ca2+ to daptomycin in a 1:1 molar ratio induces aggregation. Moreover, it has been suggested that certain residues, e.g. Asp3 and Asp7, which are essential for activity (Grunewald et al. 2004; Kopp et al. 2006), may also be important for Ca2+ binding (Jung et al. 2004). In this work, we have tried: (1) to further pinpoint how Ca2+ affects daptomycin structure/oligomerization using analytical ultracentrifugation; and (2) to determine whether a specific calcium binding site exists, based on one-dimensional 13C NMR spectra and molecular dynamics (MD) simulations. The centrifugation results indicated that daptomycin formed micelles of between 14 and 16 monomers in the presence of a 1:1 molar ratio of Ca2+ and daptomycin. The 13C NMR data indicated that addition of calcium had a significant effect on the Trp1 and Kyn13 residues, indicating that either calcium binds in this region or that these residues may be important for oligomerization. Finally, the molecular dynamics simulation results indicated that the conformational change of daptomycin upon calcium binding might not be as significant as originally proposed. Similar studies on the divalent cation Mg2+ are also presented. The implication of these results for the biological function of daptomycin is discussed. Electronic supplementary material The online version of this article (doi:) contains Supplemental Material, which is available to authorized users. Steven W. Ho and David Jung have contributed equally to this work.  相似文献   

20.
A natural chromatin containing simian virus 40 (SV40) DNA and histone has been used to examine changes in chromatin structure caused by various physical and chemical treatments. We find that histone H1 depleted chromatin is more compact in solutions of 0.15M NaCl or 2 mM MgCl2 than in 0.01 M NaCl or 0.6M NaCL, and is compact in 0.01 M NaCl solutions if histone H 1 is present. Even high concentrations of urea did not alter the fundamental beaded structure, consisting of 110A beads of 200 base pair content, each joined by thin DNA bridges of 50 base pairs. The physical bead observed by EM therefore contains more DNA than the 140 base pair "core particle". The natural variation in the bridge length is consistent with the broad bands observed after nuclease digestion of chromatin. Chromatin prepared for EM without fixation containing long 20A to 30A fibers possibly complexed with protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号