首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R S Kota  B S Gill  S H Hulbert 《Génome》1994,37(4):619-624
The chromosome 1R of rye, or the midget chromosome, is necessary for plump, viable seed development and fertility restoration in the alloplasmic line with rye cytoplasm and a hexaploid wheat nucleus. The midget chromosome of rye represents 1/15th of the physical length of the chromosome 1R of rye. C-banding analysis indicated that the centromeric and pericentric region (approximately 30% physical length) of the midget chromosome is heterochromatic and the distant 70% physical length is euchromatic. These data suggest that the midget chromosome may represent the pericentric region of the long arm of chromosome 1R. In contrast with earlier reports, our results indicate that an array of rye-specific repeated sequences (both dispersed and tandem) are present on the midget chromosome. Various rye-specific repeated DNA sequences that are present on the midget chromosome will be useful in constructing a long-range map and studying the genomic organization of the midget chromosome. It is unclear if any of these repeated DNA sequences are involved in the origin of the midget chromosome.  相似文献   

2.
A dispersed, rye-specific element has been used to isolate clones of rye origin from wheat plants containing only a single rye chromosome arm or segment. In this way a set of 23 YAC clones has been isolated from the short arm of rye chromosome 1 (1RS). This technique was extended to isolate clones from a small region of 1RS that contains a large number of agronomically important genes. The targeted cloning method allowed the isolation of 26 classes of lambda clones representing about 5% of the region. Ten of the lambda clones could be mapped to segments within this region. A third example of the application of this technique involved the isolation of clones from a very small but fully functional rye chromosome, the midget chromosome. These clones have allowed the confirmation of the origin of the midget from 1RL, and may provide a tool for the isolation of structural elements of cereal chromosomes. This technique allows the identification of clone libraries for any rye chromosome or chromosome arm, since substitution, addition and translocation lines are available for all rye chromosomes. Furthermore, the technique allows isolation of clones derived from segments of the rye genome recombined into wheat. The method is technically simple and both lambda and YAC libraries can be constructed. Synteny between the genomes of the cereals allows region-specific libraries from rye to be used to target regions of the wheat and barley genomes.  相似文献   

3.
Isolation of lambda and YAC clones from defined regions of the rye genome   总被引:1,自引:0,他引:1  
A dispersed, rye-specific element has been used to isolate clones of rye origin from wheat plants containing only a single rye chromosome arm or segment. In this way a set of 23 YAC clones has been isolated from the short arm of rye chromosome 1 (1RS). This technique was extended to isolate clones from a small region of 1RS that contains a large number of agronomically important genes. The targeted cloning method allowed the isolation of 26 classes of lambda clones representing about 5% of the region. Ten of the lambda clones could be mapped to segments within this region. A third example of the application of this technique involved the isolation of clones from a very small but fully functional rye chromosome, the midget chromosome. These clones have allowed the confirmation of the origin of the midget from 1RL, and may provide a tool for the isolation of structural elements of cereal chromosomes. This technique allows the identification of clone libraries for any rye chromosome or chromosome arm, since substitution, addition and translocation lines are available for all rye chromosomes. Furthermore, the technique allows isolation of clones derived from segments of the rye genome recombined into wheat. The method is technically simple and both lambda and YAC libraries can be constructed. Synteny between the genomes of the cereals allows region-specific libraries from rye to be used to target regions of the wheat and barley genomes. Received: 25 June 1997 / Accepted: 11 November 1997  相似文献   

4.
小麦遗传背景对黑麦抗叶锈基因Lr26的抗性表达的影响   总被引:9,自引:2,他引:7  
任正隆 《遗传学报》1993,20(4):313-316
利用1套从小麦纯系和黑麦自交系培育出的1R附加系、代换系和易位系,研究了1RS上的抗叶锈基因Lr26在小麦中的表达。结果发现,1R二体附加系和纯合1RS/1BL易位系高抗小麦叶锈病;而其小麦亲本、1R(1B)代换系和1BS/1RL易位系重感叶锈病。这一结果指出了黑麦染色体臂1RS上的抗小麦叶锈病基因Lr26在小麦中的表达受小麦染色体臂1BL上的基因的强烈影响,指出了外源基因在小麦中的表达可受染色体臂或基因水平上的相互作用的制约。文中讨论了外源基因与小麦遗传背景相互作用在小麦育种中的意义。  相似文献   

5.
Structure of the rye midget chromosome analyzed by FISH and C-banding.   总被引:3,自引:0,他引:3  
S A Jackson  J Jiang  B Friebe  B S Gill 《Génome》1997,40(5):782-784
The diminutive "midget" chromosome derived from rye (Secale cereale) was analyzed by C-banding and fluorescence in situ hybridization (FISH) using DNA probe pSau3A9 that is located in the centromeres of cereal chromosomes. FISH signals were detected at one end and overlapped one of the two telomeres of the midget, indicating that the midget is a telocentric chromosome. The FISH and C-banding results show that the centromere of the midget chromosome is smaller than those of normal wheat and rye chromosomes. These results indicate that one of the breakpoints occurred in the middle of the centromere of rye chromosome 1R during generation of the midget.  相似文献   

6.
The origin and molecular structure of the midget chromosome that is retained in a common wheat with rye cytoplasm, were studied by using fluorescent in situ hybridization (FISH). FISH with biotinylated rye genomic DNA as a probe clearly showed that the midget chromosome had originated from certain part(s) of rye chromosome(s). The midget chromosome did not possess sequences similar to wheat rDNA nor to a rye telomeric sequence with a 350 bp repeat unit. However, another repetitive sequence (120 bp family) of rye was found to occur at one end of the midget chromosome. The telomeric repeat sequences from Arabidopsis thaliana cross-hybridized to both ends of the midget chromosome as well as to wheat chromosomes. From the results obtained in this and previous studies, it is assumed that the midget chromosome originated from part of a rye chromosome, most likely the centromeric region of chromosome 1R, and that the telomeric sequences were synthesized de novo.by R. Appels  相似文献   

7.
Powdery mildew is one of the serious diseases of wheat (Triticum aestivum L., 2n = 6 × = 42, genomes AABBDD). Rye (Secale cereale L., 2n = 2 × = 14, genome RR) offers a rich reservoir of powdery mildew resistant genes for wheat breeding program. However, extensive use of these resistant genes may render them susceptible to new pathogen races because of co-evolution of host and pathogen. Therefore, the continuous exploration of new powdery mildew resistant genes is important to wheat breeding program. In the present study, we identified several wheat-rye addition lines from the progeny of T. aestivum L. Mianyang11 × S. cereale L. Kustro, i.e., monosomic addition lines of the rye chromosomes 4R and 6R; a disomic addition line of 6R; and monotelosomic or ditelosomic addition lines of the long arms of rye chromosomes 4R (4RL) and 6R (6RL). All these lines displayed immunity to powdery mildew. Thus, we concluded that both the 4RL and 6RL arms of Kustro contain powdery mildew resistant genes. It is the first time to discover that 4RL arm carries powdery mildew resistant gene. Additionally, wheat lines containing new wheat-rye translocation chromosomes were also obtained: these lines retained a short arm of wheat chromosome 5D (5DS) on which rye chromosome 4R was fused through the short arm 4RS (designated 5DS-4RS·4RL; 4RL stands for the long arm of rye chromosome 4R); or they had an extra short arm of rye chromosome 4R (4RS) that was attached to the short arm of wheat chromosome 5D (5DS) (designated 4RS-5DS·5DL; 5DL stands for the long arm of wheat chromosome 5D). These two translocation chromosomes could be transmitted to next generation stably, and the wheat lines containing 5DS-4RS·4RL chromosome also displayed immunity to powdery mildew. The materials obtained in this study can be used for wheat powdery mildew resistant breeding program.  相似文献   

8.
Summary Using in situ hybridization techniques, we have been able to identify the translocated chromosomes resulting from whole arm interchanges between homoeologous chromosomes of wheat and rye. This was possible because radioactive probes are available which recognize specific sites of highly repeated sequence DNA in either rye or wheat chromosomes. The translocated chromosomes analysed in detail were found in plants from a breeding programme designed to substitute chromosome 2R of rye into commercial wheat cultivars. The distribution of rye highly repeated DNA sequences showed modified chromosomes in which (a) most of the telomeric heterochromatin of the short arm and (b) all of the telomeric heterochromatin of the long arm, had disappeared. Subsequent analyses of these chromosomes assaying for wheat highly repeated DNA sequences showed that in type (a), the entire short arm of 2R had been replaced by the short arm of wheat chromosome 2B and in (b), the long arm of 2R had been replaced by the long arm of 2B. The use of these probes has also allowed us to show that rye heterochromatin has little effect on the pairing of the translocated wheat arm to its wheat homologue during meiosis. We have also characterized the chromosomes resulting from a 1B-1R translocation event.From these results, we suggest that the observed loss of telomeric heterochromatin from rye chromosomes in wheat is commonly due to wheat-rye chromosome translocations.  相似文献   

9.
Introgressive hybridization is an efficient means to improve the genetic diversity of cultivated cereals, including triticale. To identify the triticale lines with Aegilops introgressions, genotyping was carried out with ten lines obtained by crossing hexaploid triticale with genome-substitution forms of the common wheat cultivar Avrora: Avrolata (AABBUU), Avrodes (AABBSS), and Avrotika (AABBTT). The genome composition of the triticale lines was studied by in situ hybridization, and recombination events involving Aegilops and/or common wheat chromosomes were assumed for nine out of the ten lines. Translocations involving rye chromosomes were not observed. Substitutions for rye chromosomes were detected in two lines resulting from crosses with Avrolata. Genomic in situ hybridization (GISH) with Ae. umbellulata DNA and molecular genetic analysis showed that chromosome 1R was substituted with Ae. umbellulata chromosome 1U in one of the lines and that 2R(2U) substitution took place in the other line. Fluorescence in situ hybridization (FISH) with the Spelt 1 and pSc119.2 probes revealed a translocation from Ae. speltoides to the long arm of chromosome 1B in one of the two lines resulting from crosses with Avrodes and a translocation in the long arm of chromosome 7B in the other line. In addition, the pSc119.2 probe revealed chromosome 1B rearrangements in four lines resulting from crosses with Avrolata and in a line resulting from crosses with Avrotika. The lines were tested for main productivity parameters. A negative effect on all productivity parameters was demonstrated for Ae. umbellulata chromosome 2U. The overwinter survival in all of the lines was similar to or even higher than in the original triticale cultivars. A substantial increase in winter resistance as compared with the parental cultivar was observed for the line carrying the T7BS-7SL translocation. The line with the 1R(1U) chromosome substitution seemed promising for the baking properties of triticale.  相似文献   

10.
Based on the cross (Triticum aestivum L. x Secale cereale L.) x T. aestivum L., wheat-rye substitution lines (2n = 42) were produced with karyotypes containing, instead of a pair of homologous wheat chromosomes, a homeologous pair of rye chromosomes. The chromosome composition of these lines was described by GISH and C-banding methods, and SSR analysis. The results of genomic in situ hybridization demonstrated that karyotype of these lines included one pair of rye chromosomes each and lacked wheat--rye translocations. C-banding and SSR markers were used to identify rye chromosomes and determine the wheat chromosomes at which the substitution occurred. The lines were designated 1R(1D), 2R(2D)2, 2R(2D)3, 3R(3B), 6R(6A)2. The chromosome composition of lines IR(1A), 2R(W)1, 5R(W), 5R(5A), and 6R(W)1, which were earlier obtained according to the same scheme for crossing, was characterized using methods of telocentric analysis, GISH, C-banding, and SSR analysis. These lines were identified as 1R(1A), 2R(2D)1, 5R(5D), 5R(5A), and 6R(6A)1, C-banding of chromosomes belonging to line 1R(1A) revealed the presence of two translocated chromosomes (3DS.3DL-del. and 4AL.W) during simultaneous amplification of SSR markers located on 3DL and 4AS arms. The "combined" long arm of the newly derived chromosome 4A is assumed to be formed from the long arm of chromosome 4AS itself and a deleted segment 3DL. All examined lines are cytologically stable, except for 3R(3B), which does not affect the stability of rye 3R chromosome transfer. Chromosome identification and classification of the lines will permit them to be models for genetic studies that can be used thereafter as promising "secondary gene pools" for the purpose of plant breeding.  相似文献   

11.
Seven different mildew resistant wheat lines derived from crosses between triticale and bread wheat were examined by molecular cytogenetics and chromosome C-banding in order to determine their chromosomal composition. Genomic in situ hybridisation (GISH) showed the presence of rye germplasm in all the lines and identified three substitution lines, three double substitution lines and one addition-substitution line. C-banding identified rye chromosomes 1R and 4R in the addition-substitution line, rye chromosomes 1R and 6R in two substitution lines and 1R and 2R in the third line, and rye chromosome 1R in the three substitution lines. Two of the latter lines (7-102 and 7-169) contained a modified form of the chromosome; fluorescent in situ hybridisation (FISH) using five different repetitive DNA-probes showed a pericentric inversion of 1R in both lines. The breakpoints of the 1R inversion were between (1) the 5S rDNA site and the NOR-region on the satellite of the short arm, and (2) between two AAC(5) sites close to the centromere on the long arm. The role of the rye chromosomes in the mildew resistance, the utilisation of the inverted 1R and the significance of the lines in wheat breeding are discussed.  相似文献   

12.
The effects of rye chromosomes 1R and 5R on androgenesis in cultured anthers of wheat--rye substitution lines was studied as dependent on the cultivar origin of the rye chromosomes and on the wheat genome (A or D) subjected to substitution. Chromosome 1R stimulated embryogenesis in anther cultures, while chromosome 5R suppressed it regardless of whether the corresponding wheat chromosomes were substituted in the A or D genome. The effect of chromosome 1R on embryogenesis proved to depend on its cultivar origin. Along with rye chromosome 1R, wheat chromosome 1A was shown to substantially affect total seedling regeneration. Regeneration of green seedlings was dramatically affected both by rye chromosome 1R and by wheat chromosome 1D. The results supported the published data that individual androgenesis parameters (embryogenesis, total plant regeneration, green plant regeneration) are controlled by different genetic mechanisms.  相似文献   

13.
The effects of rye chromosomes 1R and 5R on androgenesis in cultured anthers of wheat–rye substitution lines was studied as dependent on the cultivar origin of the rye chromosomes and on the wheat genome (A or D) subjected to substitution. Chromosome 1R stimulated embryogenesis in anther cultures, while chromosome 5R suppressed it regardless of whether the corresponding wheat chromosomes were substituted in the A or D genome. The effect of chromosome 1R on embryogenesis proved to depend on its cultivar origin. Along with rye chromosome 1R, wheat chromosome 1A was shown to substantially affect total seedling regeneration. Regeneration of green seedlings was dramatically affected both by rye chromosome 1R and by wheat chromosome 1D. The results supported the published data that individual androgenesis parameters (embryogenesis, total plant regeneration, green plant regeneration) are controlled by different genetic mechanisms.  相似文献   

14.
Summary Hexaploid triticales were crossed with common wheats, and the resultant froms were selected for either triticale (AD 213/5-80) or common wheat (lines 381/80, 391/80, 393/80). The cytogenetic analysis showed that all forms differ in their chromosome composition. Triticale AD 213/5-80 and wheat line 381/80 were stable forms with 2n = 6x = 42. Lines 391/80 and 393/80 were cytologically unstable. In triticale AD 213/5-80, a 2R (2D) chromosome substitution was found. Each of the three wheat lines had a chromosome formed by the translocation of the short arm of IR into the long arm of the IB chromosome. In line 381/80, this chromosome seems to be inherited from the Kavkaz wheat variety. In lines 391/80 and 393/80, this chromosome apparently formed de novo since the parent forms did not have it. The karyotype of line 381/80 was found to contain rye chromosomes 4R/7R, 5R and 7R/4R. About 15% of the cells in line 391/80 contained an isochromosome for the 5R short arm and also a chromosome which arose from the translocation of the long arms of the 5D and 5R chromosomes. About one-third of the cells in the common wheat line 393/80 contained the 5R chromosome. This chromosome was normal or rearranged. Practical applications of the C-banding technique in the breeding of triticale is discussed.  相似文献   

15.
Transmission of chromosome 5R of rye (Secale cereale L.) and chromosome 5D of common wheat (Triticum aestivum L.) through gametes of 5R5D dimonosomics (2n = 42, 20W″ + 5R′ + 5D′) was studied. Chromosome 5R was found to have lower competitiveness as compared to 5D. Gametes with the rye chromosome were two times less often involved in the formation of a progeny. The combined frequency of the karyotypes of wheat (5D5D) and wheat monosomics (5D) was 11.6-fold higher than the frequency of the karyotypes of substitution lines (5R5R) and monosomics for the rye chromosome (5R). The karyotypes of 10.38% of hybrid plants had aberrant 5R chromosomes with different translocations formed as a result of breakages in the centromere and in the proximal region of the long arm. Telocentrics for the short arm t5RS, i5RS isochromosomes, and chromosomes with a terminal deletion T5RS.5RL-del were identified. The absence of amplification of SSR markers mapped on 5RS and the detection of PCR products for a number of 5RL markers (including the genome-specific rye marker Xrms115) permitted nine plants carrying only the long arm of chromosome 5R to be revealed. Since t5RL telocentrics were not detected by the cytological analysis, the results obtained allow us to suggest the presence of small intercalary translocations of the long arm of chromosome 5R in chromosome 5D or in other wheat chromosomes.  相似文献   

16.
Identification of a 1B/1R wheat-rye chromosome translocation   总被引:3,自引:0,他引:3  
Summary The common wheat selection 79-4045 was identified as a wheat-rye 1B/1R chromosome translocation line, by means of C-banding patterns and test cross with Chinese Spring double-ditelosomic line. The translocation chromosome consisted of the long arm of wheat chromosome 1B, including its centromere, and the short arm of rye chromosome 1R or tis portion.  相似文献   

17.
Induction of recombination between rye chromosome 1RL and wheat chromosomes   总被引:2,自引:0,他引:2  
Summary The ph1b mutant in bread wheat has been used to induce homoeologous pairing and recombination between chromosome arm 1RL of cereal rye and wheat chromosome/s. A figure of 2.87% was estimated for the maximal frequency of recombination between a rye glutelin locus tightly linked to the centromere and the heterochromatic telomere on the long arm of rye chromosome 1R in the progeny of ph1b homozygotes. This equates to a gametic recombination frequency of 1.44%. This is the first substantiated genetic evidence for homoeologous recombination between wheat and rye chromosomes. No recombinants were confirmed in control populations heterozygous for ph1b. The ph1b mutant was also observed to generate recombination between wheat homoeologues.  相似文献   

18.
利用APAGE、荧光原位杂交技术和RFLP标记,对导入黑麦(SecalecerealeL.)多小穗等性状创制的小麦新种质10_A进行了分子标记检测。APAGE分析发现,10_A与其他1RS/1BL易位系一样,含有1RS的醇溶蛋白标记位点Gld1B3。以黑麦基因组总DNA作探针,用中国春(Triticumaestivumcv.ChineseSpring)基因组DNA作封阻,与10_A根尖细胞有丝分裂染色体进行荧光原位杂交。结果表明,黑麦的1RS易位到10_A中。用25个RFLP探针进行Southern分析,进一步发现10_A的1BS特异限制性片段发生丢失,代之以黑麦1RS的特异限制性片段,而位于其他染色体上的特异限制性片段未发生缺失。据此认为,多小穗小麦新种质10_A属于1RS/1BL易位系。同时还讨论了10_A在小麦遗传改良中的利用情况。  相似文献   

19.
Construction of midget chromosomes in wheat.   总被引:1,自引:0,他引:1  
A J Lukaszewski 《Génome》1997,40(4):566-569
To test the usefulness of breakage-fusion-bridge (BFB) cycles in generating new chromosome aberrations in bread wheat (Triticum aestivum L.) and to extend the range of aberrations available, a series of midget chromosomes was produced from the long arm of chromosome 1B. Using a reverse tandem duplication initiated chromatid type BFB cycle, the 1BL arm was broken and fused with centromeres of either chromosome 5BL or 1RS to form dicentric chromosomes. The 1R and 5B centromeres were broken by centric misdivision. Among the progenies of plants with dicentric chromosomes, two classes of monocentric chromosomes were selected: deficient chromosomes 1B and chromosomes that had 1RS or 5BL for one arm and various fragments of 1BL for the other arm. Following centric misdivision of these monocentrics, midget chromosomes 1BL were isolated: deficient and deletion telocentrics and telocentrics derived from interstitial regions of 1BL. By chance, one deficient chromosome 1BS and one deletion chromosome 1BS were identified in unrelated lines of the same wheat. Following centric misdivision of these chromosomes, two midget chromosomes covering the whole of 1BS were added to the set.  相似文献   

20.
Introgressive hybridization is an efficient means to improve the genetic diversity of cultivated cereals, including triticale. To identify the triticale lines with Aegilops introgressions, genotyping was carried out with ten lines obtained by crossing hexaploid triticale with genome-substitution forms of the common wheat cultivar Aurora: Aurolata (AABBUU), Aurodes (AABBSS), and Aurotika (AABBTT). The genome composition of the triticale lines was studied by in situ hybridization, and recombination events involving Aegilops and/or common wheat chromosomes were assumed for nine out of the ten lines. Translocations involving rye chromosomes were not observed. Substitutions for rye chromosomes were detected in two lines resulting from crosses with Aurolata. Genomic in situ hybridization (GISH) with Ae. umbellulata DNA and molecular genetic analysis showed that chromosome 1R was substituted with Ae. umbellulata chromosome 1U in one of the lines and that 2R(2U) substitution took place in the other line. Fluorescence in situ hybridization (FISH) with the Spelt1 and pSc119.2 probes revealed a translocation from Ae. speltoides to the long arm of chromosome 1B in one of the two lines resulting from crosses with Aurodes and a translocation in the long arm of chromosome 7B in the other line. In addition, the pSc119.2 probe revealed chromosome 1B rearrangements in four lines resulting from crosses with Aurolata and in a line resulting from crosses with Aurotika. The lines were tested for main productivity parameters. A negative effect on all productivity parameters was demonstrated for Ae. umbellulata chromosome 2U. The overwinter survival in all of the lines was similar to or even higher than in the original triticale cultivars. A substantial increase in winter resistance as compared with the parental cultivar was observed for the line carrying the T7BS-7SL translocation. The line with the 1R(1U) chromosome substitution seemed promising for the baking properties of triticale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号