首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative study of the abilities of nine gametophytic strainsof Pteridium aquilinum to produce ethylene and to undergo apogamywas conducted. Each gametophytic strain produced ethylene atits characteristic rate and all the strains, except one, formedapogamous buds in response to evolved ethylene which collectedwithin sealed culture vessels or to exogenous ethylene suppliedin a continuous-flow system. The number of apogamous buds producedby each strain was not directly related to the ability of thestrain to produce ethylene, but rather appeared to be dependenton the ability of the gametophytes to respond to ethylene.  相似文献   

2.
Seasonal changes of ascorbate peroxidase and monodehydroascorbateradical reductase activities were studied in foliar tissuesof Norway spruce (Picea abies L.). In mature needles, APX activitiesdid not show seasonal fluctuations and were similar to thosefound in resting buds. Monodehydroascorbate radical reductaseactivity was higher in needles than in buds and higher in winterthan in summer. Maximum activities of both enzymes were foundbefore bud break and minimum activities in newly formed needles.When spruce seedlings were exposed to an artifical frost eventof –5°C for one night in spring, ascorbate peroxidaseactivity declined in young needles before the onset of visibleinjury but corresponding to a sudden upsurge in lipid peroxidation.After one week, some shoots showed severe symptoms of injury,some were slightly injured and others did not show any visibleinjury. In lethally injured needles, antioxidative protection(ascorbate peroxidase, monodehydroascorbate radical reductase,glutathione reductase, glutathione, ascorbate, superoxide dismutase)had collapsed. Surviving needles showed a coordinated increasein all components of the antioxidative system suggesting anefficient induction of defense systems. However, enhanced protectionwas observed only transiently. In fall, needles that had beenexposed to frost in spring contained significantly less antioxidantsthan unstressed needles indicating that unseasonal frost causedmemory effects. (Received September 16, 1995; Accepted May 28, 1996)  相似文献   

3.
One of the characteristic properties of ascorbate peroxidase(APX), which distinguishes it from guaiacol peroxidase, Cytc peroxidase and glutathione peroxidase, is the rapid inactivationof the enzyme under conditions where an electron donor is absent.When thylakoid-bound APX (tAPX) in 100 µM ascorbate wasdiluted 500-fold with an ascorbate-depleted medium, the enzymaticactivity was lost with half time of about 15 s. The inactivationof tAPX was suppressed under anaerobic conditions and also bythe addition of catalase, but it was unaffected by the additionof superoxide dismutase. These observations suggest that hydrogenperoxide at nanomolar levels, produced by autooxidation of ascorbateat lower than micromolar levels, might participate in the inactivationof tAPX. The participation of hydrogen peroxide was confirmedby the inactivation of tAPX upon incubation with hydrogen peroxideunder anaerobic conditions. In the absence of ascorbate, theheme of the two-electron-oxidized intermediate of tAPX (designatedCompound I) is decomposed by hydrogen peroxide. Thus, the instabilityof Compound I to hydrogen peroxide is responsible for the inactivationof APX when ascorbate is not available for Compound I and theenzyme cannot turnover. (Received October 16, 1995; Accepted February 21, 1996)  相似文献   

4.
A genomic clone encoding ascorbate oxidase was isolated frompumpkin (Cucurbita sp.)- This gene is consisted of four exonsand three introns. Analyses of the promoter fusion to ß-glucuronidasereporter gene by transient expression assay in pumpkin fruittissues suggested the existence of a cis-acting region responsiblefor auxin regulation. (Received November 28, 1996; Accepted March 8, 1997)  相似文献   

5.
A novel heme-containing ascorbate oxidase isolated from oyster mushroom, Pleurotus ostreatus, catalyzes oxidation of ascorbic acid (Kim et al., 1996). In this report, we describe the identification of intracellular substrates of the enzyme in the mushroom. Six compounds, which can serve as substrate of the heme-containing ascorbate oxidase, were identified as L-ascorbic acid, D-erythroascorbic acid, 5-O-(α-D-glucopyranosyl)-D-erythroascorbic acid, 5-O-(α-D-xylopyranosyl)-D-erythroascorbic acid, 5-methyl-5-O-(α-D-gluco-pyranosyl)-D-erythroascorbic acid, and 5-methyl-5-O-(α-D-xylopyranosyl)-D-erythroascorbic acid. All of the compounds were oxidized at a significant rate by the heme-containing ascorbate oxidase. Oxidation of the compounds produced equimolar amounts of hydrogen peroxide per mole of substrate.  相似文献   

6.
Cell walls from suspension cultures of parsley (Petroselinum crispum L.) induced with a fungal elicitor contained hydroxycinnamoyl ester groups presumably not bound to pectic polysaccharides. Extracts from these cells were separated into a range of low-molecular-weight compounds containing esterified ferulic and p-coumaric acid as well as glucose and some arabinose. Similar compounds also accumulated extracellularly in elicited cultures but only in the presence of the peroxidase inhibitor ascorbate, suggesting that they may represent the exported precursors for cell wall hydroxycinnamic acids. From cultures elicited in the presence of ascorbate, alkali released from the cell walls more ferulic, p-coumaric and p-hydroxybenzoic acid, as well as p-hydroxybenzaldehyde and vanillin, indicating that the corresponding wall phenolics can all become further cross-linked. Received: 6 September 1996 / Revision received: 10 March 1997 / Accepted: 10 April 1997  相似文献   

7.
Purification and some properties of a novel microbial lactate oxidase   总被引:1,自引:0,他引:1  
Geotrichum candidum was found to produce a lactate oxidase. The enzyme was purified by gel filtration and ion-exchange chromatography. The purified lactate oxidase showed a molecular mass of 50 kDa under denaturing and about 400 kDa under non-denaturing conditions. Transmission electron micro-scopy analysis confirmed an octameric structure. FMN was found to be a cofactor for this enzyme. Polarographic studies confirmed an oxygen uptake by the lactate oxidase. The enzyme showed specificity towards the L isomer of lactate and did not oxidise pyruvate, fumarate, succinate, maleate and ascorbate. It was stable at alkaline pH and also for 15 min at 45°C. The addition of glycerol and dextran 500 000 to the enzyme sample enhanced storage stability. Received: 28 September 1995/Received revision: 10 January 1996/Accepted: 15 January 1996  相似文献   

8.
Ascorbate is readily oxidized in aqueous solution by ascorbate oxidase. Ascorbate radicals are formed, which disproportionate to ascorbate and dehydroascorbic acid. Addition of erythrocytes with increasing intracellular ascorbate concentrations decreased the oxidation of ascorbate in a concentration-dependent manner. Concurrently, it was found, utilizing electron spin resonance spectroscopy, that extracellular ascorbate radical levels were decreased. Control experiments showed that these results could not be explained by leakage of ascorbate from the cells, inactivation of ascorbate oxidase, or oxygen depletion. Thus, this means that intracellular ascorbate is directly responsible for the decreased oxidation of extracellular ascorbate. Exposure of ascorbate-loaded erythrocytes to higher levels of extracellular ascorbate radicals resulted in the detection of intracellular ascorbate radicals. Moreover, efflux of dehydroascorbic acid was observed under these conditions. These data confirm the view that intracellular ascorbate donates electrons to extracellular ascorbate free radical via a plasma membrane redox system. Such a redox system enables the cells to effectively counteract oxidative processes and thereby prevent depletion of extracellular ascorbate.  相似文献   

9.
The control of ascorbic acid synthesis and turnover in pea seedlings   总被引:10,自引:0,他引:10  
The rate of ascorbate synthesis and turnover in pea seedling embryonic axes was investigated in relation to its pool size. Ascorbate accumulated in embryonic axes of germinating pea seeds which has been supplied with ascorbate. Incorporation of [U-14C]glucose into ascorbate after a 2 h labelling period was reduced by ascorbate loading for 3 h and 20 h, providing evidence that ascorbate biosynthesis is inhibited by endogenous ascorbate. Ascorbate turnover was estimated by following the metabolism of [1-14C]ascorbate over 2 h after ascorbate loading and by the rate of decrease of the ascorbate pool size after ascorbate loading. Ascorbate turnover rate, determined by [1-14C]ascorbate metabolism, increased as a linear function of pool size. The absolute turnover rate was higher in ascorbate-loaded embryonic axes but was always about 13% of the pool per hour. The initial rate of ascorbate turnover, estimated from the net decrease in pool size after ascorbate loading, also showed a similar turnover rate to that estimated from [1-14C]ascorbate metabolism. Ascorbate loading had no effect on ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase or glutathione reductase activity. Ascorbate oxidase activity decreased after ascorbate loading.  相似文献   

10.
Ascorbate peroxidase isoforms localized in the stroma and thylakoid of higher plant chloroplasts are rapidly inactivated by hydrogen peroxide if the second substrate, ascorbate, is depleted. However, cytosolic and microbody-localized isoforms from higher plants as well as ascorbate peroxidase B, an ascorbate peroxidase of a red alga Galdieria partita, are relatively tolerant. We constructed various chimeric ascorbate peroxidases in which regions of ascorbate peroxidase B, from sites internal to the C-terminal end, were exchanged with corresponding regions of the stromal ascorbate peroxidase of spinach. Analysis of these showed that a region between residues 245 and 287 was involved in the inactivation by hydrogen peroxide. A 16-residue amino acid sequence (249-264) found in this region of the stromal ascorbate peroxidase was not found in other ascorbate peroxidase isoforms. A chimeric ascorbate peroxidase B with this sequence inserted was inactivated by hydrogen peroxide within a few minutes. The sequence forms a loop that binds noncovalently to heme in cytosolic ascorbate peroxidase of pea but does not bind to it in stromal ascorbate peroxidase of tobacco, and binds to cations in both ascorbate peroxidases. The higher susceptibility of the stromal ascorbate peroxidase may be due to a distorted interaction of the loop with the cation and/or the heme.  相似文献   

11.
Entry of vitamin C or ascorbate into most tissues requires its movement across the endothelial cell barrier of vessels. If trans-cellular ascorbate movement occurs, then it should be evident as ascorbate efflux from endothelial cells. Cultured EA.926 endothelial cells that had been loaded to about 3.5 mM intracellular ascorbate lost 70–80% of ascorbate to the medium over several hours at 37°C via a non-saturable process that was insensitive to anion transport inhibitors and thiol reagents. Oxidation of this extracellular ascorbate by ascorbate oxidase or ferricyanide enhanced apparent ascorbate efflux, suggesting that efflux of the vitamin was countered in part by its re-uptake on ascorbate transporters. Although basal ascorbate efflux was not calcium-dependent, increased entry of calcium into the cells enhanced ascorbate release. These results support the hypothesis that ascorbate efflux reflects trans-endothelial cell ascorbate movement out of the blood vessel.  相似文献   

12.
Leaves of chlorotic plants of Vitis vinifera were investigatedfor physiological and ultrastructural disorders by comparingthem with leaves of apparently healthy plants from a vineyard,where infection with Hop Stunt Viroid F (HSVdg) and GrapevineYellow Speckle Viroid I (GYSVdl) was widespread. In affectedplants, chlorosis was much stronger in young and developingthan in old and fully expanded leaves. Chemical analyses failedto reveal mineral deficiencies. The quantum yield of photosynthesiswas decreased in chlorotic leaves. A decrease in the numberof PSI reaction centers was also observed. Persisting photoinhibitionoccurred only in leaves of affected plants. The redox stateof cellular and extracellular ascorbate and increased levelsof glutathione indicated oxidative stress in affected plants.Ultrastructural analysis revealed both swelling and loss ofthylakoids even in young chlorotic leaves and other pathologicalchanges. Symptoms were similar to those normally observed onlyin old senescing leaves. However, chlorotic leaves showed unexpectedlyhigh protein levels, though aging is known to lead to proteindegradation. (Received April 30, 1996; Accepted October 14, 1996)  相似文献   

13.
Facultative CAM plants such as Mesembryanthemum crystallinum(ice plant) possess C3 metabolism when unstressed but developCAM under water or salt stress. When ice plants shift from C3metabolism to CAM, their stomata remain closed during the dayand open at night. Recent studies have shown that the stomatalresponse of ice plants in the C3 mode depends solely on theguard cell response to blue light. Recent evidence for a possiblerole of the xanthophyll, zeaxanthin in blue light photoreceptionof guard cells led to the question of whether changes in theregulation of the xanthophyll cycle in guard cells parallelthe shift from diurnal to nocturnal stomatal opening associatedwith CAM induction. In the present study, light-dependent stomatalopening and the operation of the xanthophyll cycle were characterizedin guard cells isolated from ice plants shifting from C3 metabolismto CAM. Stomata in epidermis detached from leaves with C3 metabolismopened in response to white light and blue light, but they didnot open in response to red light. Guard cells from these leavesshowed light-dependent conversion of violaxan-thin to zeaxanthin.Induction of CAM by NaCI abolished both white light- and bluelight-stimulated stomatal opening and light-dependent zeaxanthinformation. When guard cells isolated from leaves with CAM weretreated with 100 mM ascorbate, pH 5.0 for 1 h in darkness, guardcell zeaxanthin content increased at rates equal to or higherthan those stimulated by light in guard cells from leaves inthe C3 mode. The ascorbate effect indicates that chloroplastsin guard cells from leaves with CAM retain their competenceto operate the xanthophyll cycle, but that zeaxanthin formationdoes not take place in the light. The data suggest that inhibitionof light-dependent zeaxanthin formation in guard cells mightbe one of the regulatory steps mediating the shift from diurnalto nocturnal stomatal opening typical of plants with CAM. (Received July 5, 1996; Accepted December 12, 1996)  相似文献   

14.
Ascorbate levels and redox state, as well as the activities of the ascorbate related enzymes, have been analysed both in the apoplastic and symplastic spaces of etiolated pea (Pisum sativum L.) shoots during cellular differentiation. The ascorbate pool and the ascorbate oxidizing enzymes, namely ascorbate oxidase and ascorbate peroxidase, were present in both pea apoplast and symplast, whereas ascorbate free radical reductase and dehydroascorbate reductase were only present in the symplastic fractions. During cell differentiation the ascorbate redox enzymes changed in different ways, since a decrease in ascorbate levels, ascorbate peroxidase and ascorbate free radical reductase occurred from meristematic to differentiated cells, whereas ascorbate oxidase and dehydroascorbate reductase increased. The activity of secretory peroxidases has also been followed in the apoplast of meristematic and differentiating cells. These peroxidases increased their activity during differentiation. This behaviour was accompanied by changes in their isoenzymatic profiles. The analysis of the kinetic characteristics of the different peroxidases present in the apoplast suggests that the presence of ascorbate and ascorbate peroxidase in the cell wall could play a critical role in regulating the wall stiffening process during cell differentiation by interfering with the activity of secretory peroxidases.  相似文献   

15.
The comparison was undertaken between the effects of ascorbate versus ascorbate plus iron supplementation on DNA damage. Twenty healthy subjects with initial levels of plasma ascorbate of 67.2 +/- 23.3 micromol/l were randomly assigned to and cycled through one of three supplementation regimes: placebo, 260 mg/d ascorbate, 260 mg/d ascorbate plus 14 mg/d iron for 6 weeks separated by 8-week washout periods. Supplementation did not cause a rise in total oxidative DNA damage measured by GC-MS. However, a significant decrease occurred in levels of 8-oxo-7,8-dihydroguanine by ascorbate supplementation and 5-hydroxymethyl uracil by both ascorbate and ascorbate plus iron supplementation, relative to the pre-supplemental levels but not to the placebo group. In addition, levels of 5-hydroxymethyl hydantoin and 5-hydroxy cytosine increased significantly, only relative to pre-supplementation, by ascorbate plus iron treatment. No compelling evidence for a pro-oxidant effect of ascorbate supplementation, in the presence or absence of iron, on DNA base damage was observed.  相似文献   

16.
Chicken liver is lack of ascorbic acid biosynthesis system, different from mammals and highly evoluted birds. Chicken hepatocytes cultured without ascorbate was expected to have lower ascorbate amounts than physiological levels. Intracellular was decreased as compared with intact liver by cell preparation performed with in situ collagenase perfusion. We added ascorbate to a primary culture of chicken hepatocytes in order to restore the amount of ascorbate. Serum-free Leivobitz's L-15 medium which do not contain ascorbate was used for control medium. Cells were cultured with several concentrations of ascorbate for 24 or 48 h. After ascorbate supplementation for 24 to 48 h, cellular ascorbate concentration increased depending on the dose of medium ascorbate. Medium lactate dehydrogenase activity derived from hepatocytes, an index of cell injury, decreased upon 5-100 mg/l of ascorbate supplementation for 48 h. Tyrosine aminotransferase activity, an index of liver function, increased following culture with 50 and 100 mg/l ascorbate for 48 h. The activities, however, decreased by supplementation with 1000 mg/l of ascorbate. In conclusion hepatocytes lost intracellular ascorbate during preparation by in situ collagenase perfusion. Supplementation of ascorbate restored cellular ascorbate concentration, lowered cell injury and raised tyrosine aminotransferase activitv in primary cultured chicken hepatocytes. Ascorbate treatment for 48 h at 50 mg/l was the best combination in this study for primary culture of chicken hepatpcyte with non-serum L-15 medium  相似文献   

17.
Adrenal chromaffin granules must shuttle reducing equivalents from the cytosol inward to reduce ascorbic acid oxidized during norepinephrine biosynthesis by intragranular dopamine-beta-hydroxylase. A transmembrane electron shuttle between the external (cytosolic) and intragranular ascorbate pools was demonstrated in vitro in intact bovine chromaffin granules undergoing tyramine- or dopamine-stimulated dopamine-beta-hydroxylase turnover. Incubation of intact chromaffin granules with tyramine results in a time-dependent decrease in reduced intragranular ascorbate and production of octopamine. The rate of ascorbate oxidation is a function of the extragranular concentrations of tyramine over the range 50 microM to 2 mM and is 95% inhibited by addition of the dopamine-beta-hydroxylase inhibitor disulfiram. The stoichiometry of octopamine synthesized/ascorbate oxidized closely approximates unity. The presence of extragranular dopamine also induces oxidation of intragranular ascorbate which is inhibited by blocking dopamine transport with reserpine. On the other hand, incubation with octopamine, which is also transported by the granules, causes no net decrease in reduced intragranular ascorbate. The presence of 400 microM extragranular ascorbate abolishes the observed tyramine-induced intragranular ascorbate oxidation. The addition of ascorbate extragranularly 30 min after addition of tyramine reverses the oxidation of intragranular ascorbate. The measurement of [14C]ascorbate distribution ratios in granule pellets and supernatants indicates that there is no transmembrane transport of ascorbate. Extravesicular NADH had no significant effect on matrix ascorbate levels during beta-hydroxylation. These data provide new in vitro evidence that chromaffin granules shuttle reducing equivalents inwardly from an extra- to an intravesicular ascorbate pool and that cytosolic ascorbate is the source of the intragranular reducing equivalents required during norepinephrine biosynthesis.  相似文献   

18.
The Km of dopamine beta-hydroxylase for its cofactor, ascorbic acid, was determined in situ in primary cultures of bovine adrenomedullary chromaffin cells and in isolated chromaffin vesicles. A range of intravesicular ascorbate concentrations in chromaffin cell cultures (1.1-31.2 mM) was achieved by varying the number and concentration of ascorbate additions to the culture media. The rate of octopamine synthesis from tyramine displayed a Michaelis-Menten relationship with respect to ascorbate concentration and an apparent Km of dopamine beta-hydroxylase for ascorbate of 15.0 +/- 2.0 mM was determined. In isolated chromaffin vesicles, with an initial intravesicular ascorbate concentration of approximately 10 mM, ascorbate consumption during beta-hydroxylation occurred as a first order process. This indicated that dopamine beta-hydroxylase was not saturated at this initial ascorbate concentration. When isolated chromaffin vesicles were prepared with different intravesicular ascorbate concentrations, the rate of octopamine synthesis displayed a Michaelis-Menten relationship with respect to ascorbate with an apparent Km of 17.0 +/- 5.0 mM. Ascorbate consumption also occurred as a first order process in ascorbate-loaded chromaffin-vesicle ghosts which had initial ascorbate concentrations of approximately 30 mM but which were depleted of other small molecules such as catecholamines. These results indicate that the in situ Km of dopamine beta-hydroxylase for ascorbate (approximately 15 mM) is 25-fold higher than it is for the purified or partially purified enzyme assayed under optimal conditions in vitro (0.6 mM). The factor(s) which decreases the enzyme affinity for ascorbate, relative to in vitro, resides in the chromaffin vesicle interior and is also retained in chromaffin-vesicle ghosts. The mechanism of this effect remains to be determined. The Km value determined in these experiments is close to the estimated intravesicular ascorbate concentration of bovine chromaffin granules in vivo (4), suggesting that the availability of ascorbate could become a factor in regulating the rate of dopamine beta-hydroxylation.  相似文献   

19.
The transport of ascorbate into cultured bovine retinal pigment epithelial (RPE) cells is reported. Primary or subcultured RPE cells were incubated in the presence of 10-500 microM L-[carboxyl-14C]-ascorbate for various periods of time. Accumulation of ascorbate into RPE cells followed a saturable active transport with a Km of 125 microM and a Vmax of 28 pmole/micrograms DNA/min. RPE intracellular water was calculated to be 0.8 pL/cell, and the transported cellular ascorbate concentration was 7.5 +/- 0.8 mM. Replacement of 150 mM NaCl in the incubation media with choline-Cl strongly inhibited (80 +/- 8%) ascorbate uptake into cultured RPE cells. Although the depletion of cellular ATP by 2,4-dinitrophenol and the inhibition of Na+-K+-ATPase by ouabain reduced ascorbate transport into RPE significantly, active transport of ascorbate was not entirely inhibited by these metabolic inhibitors. The ascorbate analogue, D-isoascorbate, competitively inhibited ascorbate transport into cultured RPE with a Ki of 12.5 mM. Cells grown in the presence of 5 to 50 mM alpha-D-glucose in the growth media did not differ in their ability to transport ascorbate. In contrast, the presence of alpha-D-glucose or its nonmetabolizable analogues, 3-0-methyl-glucose, alpha-methyl-glucose, and 2-deoxy-glucose, but not L-glucose or beta-D-fructose, in the incubation media inhibited ascorbate transport. myo-Inositol (10 or 20 mM) also inhibited ascorbate transport into RPE cells. The active uptake of ascorbate into cultured RPE cells was primarily coupled to the movement of sodium ion down its electrochemical gradient. A bifunctional, cotransport carrier possessing an ascorbate-binding site and a sodium-binding site may be involved in the ascorbate uptake system. The inhibition of ascorbate uptake by sugars appeared to be heterologous in nature, occurring between two distinct carrier systems, both of which were dependent on the sodium ions.  相似文献   

20.
An increase in oxidative stress may contribute to the development of diabetic complications. The key aqueous-phase chain-breaking antioxidant ascorbate is known to be deficient in diabetes, and we have therefore investigated the effects of ascorbate supplementation on oxidative stress in the streptozotocin diabetic rat. Markers of lipid peroxidation (malondialdehyde [MDA] and diene conjugates) were increased in plasma and erythrocytes of untreated diabetic animals, and levels of the antioxidants ascorbate and retinol were reduced. Plasma tocopherol was unchanged. Insulin treatment normalized MDA and ascorbate levels, although ascorbate metabolism remained disturbed, as indicated by increased levels of dehydroascorbate. High-dose ascorbate supplementation in the absence of insulin treatment restored plasma ascorbate to normal and increased plasma retinol and tocopherol levels. However, MDA and diene conjugate levels remained unchanged, possibly as a result of increased iron availability. High-dose ascorbate supplementation should be approached with caution in diabetes, as ascorbate may exert both antioxidant and prooxidant effects in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号