首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the study was the morphological and histochemical characteristics of differentiation of tumors developed after transplantation of GFP-positive mesenchymal bone-marrow stem cells (MSC) of transgenic mice C57BL/6 into M. quadriceps femoris of mdx mice. The tumors occurred only after transplantation of MSCs of 43-45th passages and did not arise after transplantation of MSCs of the 15th passage. No tumors developed also after transplantation of MSCs of 43-45th passages into muscle of C57BL/6 mice. The average weight of tumors appeared in 4 mdx mice studied was 1.3 +/- 0.5 g. All four tumors were classified as mesenchymomas because they originated from mesenchymal stem cells. Most of the periphery of the tumors was classified as fibrosarcomas with mitotic index 0.9 +/- 0.1%. The central parts of tumors had areas with epithelial like morphology of cells. Such cells showed positive reactivity for alcyan blue staining at pH 2.5, which indicated chondrocyte nature of the cells. No mitosis was observed in epithelial like cells. In the tumors, there were also areas with bone trabeculae containing megacaryocytes and foci of myeloid and erythrocyte hematopoiesis. There were also areas with neuronal and glial cells, and accumulations of adipocytes. One of the tumors was classified as a round cells sarcoma. The observed types of tumor cell differentiation in vivo were in accordance with described in literature types of MSCs differentiation after induction in vitro with special inductors. The spectrum of in vivo differentiation of transgenic GFP-positive MSCs after transplantation to mdx mice was broader than the spectrum of in vivo differentiation of transfected or transformed in vitro adult MSCs after transplantation to immunodeficient mice and mdx mice.  相似文献   

2.
Adipose tissue‐derived mesenchymal stem cells (AD‐MSCs) have been shown to be capable of differentiating into multiple cell type and exert immunomodulatory effects. Since the selection of ideal stem cell is apparently crucial for the outcome of experimental stem cell therapies, therefore, in this study we compared AD‐MSCs conditioned media (CM) from BALB/c, C57BL/6, and DBA mouse strains. No significant difference was found in the morphology, cell surface markers, in vitro differentiation and proliferation potentials of AD‐MSCs isolated from C57BL/6, BALB/c, and DBA mice. The immunological assays showed some variation among the strains in the cytokines, nitric oxide (NO), and indoleamine 2,3‐dioxygenase (IDO) production and immunomodulatory effects on splenocytes functions. Our results indicated a suppression of splenocytes proliferation in the presence of AD‐MSC CM from the three inbred mouse strains. However, BALB/c CM exerted a higher suppression of splenocytes proliferation. AD‐MSCs isolated from C57BL/6 and BALB/c mice produced higher levels of TGF‐β than those from DBA mice. Furthermore, IL‐17 and IDO production was higher in AD‐MSCs isolated from BALB/c mice. Our results indicated an increased production of TGF‐β, IL‐4, IL‐10, NO, and IDO by splenocytes in response to CM from BALB/c AD‐MSCs. In conclusion, our results showed that the immunomodulatory properties of mouse AD‐MSCs is strain‐dependent and this variation should be considered during selection of appropriate stem cell source for in vivo experiments and stem cell therapy strategies. J. Cell. Biochem. 114: 955–965, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
4.
Mesenchymal stem cells (MSCs) are used for cell-based therapies because of their immunomodulatory properties. The immunomodulatory properties of adipogenic (AD) and osteogenic (OS) differentiated adipose tissue-derived MSCs (AD-MSCs) isolated from BALB/c, C57BL/6, and DBA mice were compared. Splenocytes proliferation was suppressed in the presence of AD-MSCs conditioned media in all mice. After OS differentiation, BALB/c AD-MSCs produced higher levels of TGF-β and IL-17 and lower levels of NO than AD-MSCs isolated from C57BL/6 and DBA mice. In addition, OS differentiated AD-MSCs isolated from DBA mice produced lower levels of IL-10 than AD-MSCs isolated from C57BL/6 and DBA mice. After in vitro AD and OD differentiation, AD-MSCs isolated from each mouse produced higher levels of NO and IDO than undifferentiated cells. Additionally, AD-MSCs isolated from C57BL/6 and DBA mice produced higher levels of NO than AD-MSCs isolated from BALB/c mice. Adipose tissue-derived MSCs thus retain their immunomodulatory properties after in vitro OS and AD differentiation in a strain-dependent manner.  相似文献   

5.
Human T-cell leukemia/lymphotropic virus type I (HTLV-I) infection causes a variety of human diseases, including adult T-cell leukemia/lymphoma. The viral transactivator Tax has been implicated as a key factor in the HTLV-I-induced transformation pathway. To investigate the components of this pathway, we derived fibroblast-like cell lines, designated T6 and T9, from tail biopsies of tax-transgenic C57BL/6 mice that do not develop tumors. Phenotypic characterization of T6 and T9 cells and T6-derived subclones revealed that they differ in their abilities to form foci in vitro and tumors in vivo. The observed differences in the levels of Tax expression did not correlate with their degree of neoplastic potential. However, a control cell line derived from a nontransgenic C57BL/6 mouse did not form foci in vitro or tumors in vivo, indicating that Tax was required for the transformation process. Results of Northern analyses showed that the T9 cells and the highly malignant derivatives of T6 cells expressed elevated levels of c-myc mRNA. These findings suggest that progression of the tax-transgenic cells toward a more malignant phenotype might involve c-myc deregulation.  相似文献   

6.
Mesenchymal stem cells (MSCs) are found in virtually all organs and tissues. These cells can presumably be transformed into tumor stem cells by genotoxic factors and, subsequently, initiate tumor growth. The aim of the present work consisted in analysis of the possibility of malignant transformation of cultured MSCs from the bone marrow (BM) of mice after in vitro exposure to γ-radiation and in the characterization of biochemical and histological features of tumors that developed after the transplantation of BM MSCs to syngenic mice. Two of five mice developed tumors 3 to 4 months after the subcutaneous injection of BM MSCs irradiated at a dose of 1 Gy, five of five animals developed tumors after the administration of BM MSCs irradiated at a dose of 6 Gy, and only one of five mice injected with nonirradiated BM MSCs developed a tumor 6 months after cell transplantation. Telomerase activity in a tumor that developed from BM MSCs irradiated at a dose of 6 Gy was twice as high as that in the tumor that developed from BM MSCs irradiated at a dose of 1 Gy. The histological structure of the neoplasms corresponded to that of multicomponent mesenchymoma, a malignant tumor also termed “a mix of sarcomas.” The tumors consisted of tissue fragments of different histological types. Thus, BM MSCs exposed to 1 or 6 Gy of radiation can be transformed into tumor cells and give rise to multicomponent mesenchymomas, whereas malignant transformation of control BM MSCs occurs much less often.  相似文献   

7.
目的:探讨小鼠间充质干细胞(MSCs)定向诱导分化成脂肪细胞微小RNA(miRNA)表达的变化,为进一步研究miRNA调控MSCs向脂肪细胞分化的分子机制奠定基础。方法:采用全骨髓体外分离结合差速贴壁法纯化扩增C57BL/6小鼠MSCs,形态学观察细胞生长情况,并用免疫组化方法鉴定细胞表面抗原CD29、CIM4和CD34的表达。脂肪细胞分化诱导剂诱导MSCs分化为脂肪细胞,利用油红O染色,判断MSCs成脂分化情况。运用rrfiRNA芯片技术检测MSC8和脂肪细胞中差异表达的miRNA。结果:①倒置显微镜下观察,传5代后可获得均一性较高的MSCs;免疫组化显示90%以上的骨髓间质干细胞CD29、CD44阳性,CD34阴性。MSCs经脂肪诱导剂诱导后,胞内大量脂滴形成,油红O染色阳性;②基因微阵列分析表明,小鼠MSCs分化成脂肪细胞差异表达的miRNA共75个,其中20个表达上调、55个表达下调。结论:MSCs分化成脂肪细胞存在miRNA表达的变化,某些miRNA很可能具有重要的调控MSCs成脂分化的作用。  相似文献   

8.
Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristics of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of oncogenesis, thus warranting a more strict assessment of MSCs prior to cell therapy.  相似文献   

9.
The identification of multipotential mesenchymal stem cells (MSCs) derived from adult human tissues, including bone marrow stroma and a number of connective tissues, has provided exciting prospects for cell-based tissue engineering and regeneration. This review focuses on the biology of MSCs, including their differentiation potentials in vitro and in vivo, and the application of MSCs in tissue engineering. Our current understanding of MSCs lags behind that of other stem cell types, such as hematopoietic stem cells. Future research should aim to define the cellular and molecular fingerprints of MSCs and elucidate their endogenous role(s) in normal and abnormal tissue functions.  相似文献   

10.
Liver failure represents a serious challenge for cell based therapies. Mesenchymal stem cells (MSCs) possess potential for regeneration of fibrotic liver; however, there is a dire need to improve their hepatic differentiation. This study examines a pretreatment strategy to augment the differentiation potential of MSCs towards hepatic lineage. MSCs were isolated from C57BL/6 wild type mice and were characterized by flow cytometry for CD44 (92.4%), CD90 (96.6%), CD105 (94.7%), CD45 (0.8%) and CD34 (1.4%) markers. To improve the differentiation potential of MSCs towards hepatic lineage, cells were pretreated with injured liver tissue in an in-vitro model, which resulted in high expression of albumin, cytokeratin 8, 18, TAT and HNF1α as compared to untreated MSCs. The efficacy of pretreated MSCs was evaluated by preparing in-vivo mouse model with liver fibrosis by intraperitoneal administration of CCl(4). Pretreated MSCs were transplanted in the left lateral lobe of mice with liver fibrosis and showed enhanced localization and differentiation abilities after 1 month. The expression for cytokeratin 8, 18, albumin and Bcl-xl was up-regulated and that of HGF, Bax and Caspase- 3 was down-regulated in animals transplanted with pretreated MSCs. Sirus red staining also confirmed a significant reduction in the fibrotic area in liver tissue transplanted with pretreated MSCs as compared to untreated MSCs and was concomitant with improved serum levels of bilirubin and alkaline phosphatase (ALP). Therefore, it was concluded that pretreatment with injured liver tissue augment homing and hepatic differentiation abilities of MSCs and provides an improved procedure for the treatment of liver fibrosis.  相似文献   

11.
间充质干细胞是一类具有多向分化潜能的成体干细胞,在体内外不仅可以被诱导分化为中胚层细胞,而且可以分化为内胚层和神经外胚层细胞。间充质干细胞易分离,体外可大量扩增,异体移植不引起免疫排斥反应,在细胞治疗和组织工程中具有广阔的应用前景。经过适当诱导,间充质干细胞可能成为胰岛β细胞的来源之一。就间充质干细胞的生物学性状和优势,以及诱导分化为胰岛β细胞的技术方法和发展趋势进行了综述。  相似文献   

12.
Myocardial infarction is one of the leading causes of mortality in aged people. Whether age of donors of mesenchymal stem cells (MSCs) affects its ability to repair the senescent heart tissue is unknown. In the present study, MSCs from young (2 months) and aged (18 months) green fluorescent protein expressing C57BL/6 mice were characterized with p16INK4a and β‐gal associated senescence. Myocardial infarction was produced in 18‐month‐old wild‐type C57BL/6 mice transplanted with MSCs from young and aged animals in the border of the infarct region. Expression of p16INK4a in MSCs from aged animals was significantly higher (21.5%± 1.2, P < 0.05) as compared to those from young animals (9.2%± 2.8). A decline in the tube‐forming ability on Matrigel was also observed in aged MSCs as well as down‐regulation of insulin‐like growth factor‐1, fibroblast growth factor (FGF‐2), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) compared to young cells. Mice transplanted with young MSCs exhibited significant improvement in their left ventricle (LV) systolic and diastolic function as demonstrated by dp/dtmax, dp/dtmin, Pmax. Reduction in the LV fibrotic area was concomitant with neovascularization as demonstrated by CD31 and smooth muscle actin (SMA) expression. Real‐time RT‐PCR analysis for VEGF, stromal cell derived factor (SDF‐1α) and GATA binding factor 4 (GATA‐4) genes further confirmed the effect of age on MSC differentiation towards cardiac lineages and enhanced angiogenesis. These studies lead to the conclusion that repair potential of MSCs is dependent on the age of donors and the repair of senescent infarcted myocardium requires young healthy MSCs.  相似文献   

13.
Telomerase deficiency impairs differentiation of mesenchymal stem cells   总被引:8,自引:0,他引:8  
Expression of telomerase activity presumably is involved in maintaining self-replication and the undifferentiated state of stem cells. Adult mouse bone marrow mesenchymal stem cells (mMSCs) are multipotential cells capable of differentiating into a variety of lineage cell types, including adipocytes and chondrocytes. Here we show that the lacking telomerase of mMSC lose multipotency and the capacity to differentiate. Primary cultures of mMSCs were obtained from both telomerase knockout (mTR(-/-)) and wild-type (WT) mice. The MSCs isolated from mTR(-/-) mice failed to differentiate into adipocytes and chondrocytes, even at early passages, whereas WT MSCs were capable of differentiation. Consistent with other cell types, late passages mTR(-/-)MSCs underwent senescence and were accompanied by telomere loss and chromosomal end-to-end fusions. These results suggest that in addition to its known role in cell replication, telomerase is required for differentiation of mMSCs in vitro. This work may be significant for further potentiating adult stem cells for use in tissue engineering and gene therapy and for understanding the significance of telomerase expression in the process of cell differentiation.  相似文献   

14.
Mouse embryonic stem (ES) cells with the C57BL/6 genetic background allow the generation of knockout mice without the need to backcross to C57BL/6. However, C57BL/6 ES cells whose pluripotency after homologous recombination has been confirmed are not yet available from public cell banks. To facilitate the use of ES cells derived from C57BL/6 sublines in both biologic and medical research, we demonstrated that the use of knockout serum replacement as a medium supplement and 8-cell blastomeres as recipient embryos allowed establishment of ES cells and production of germline chimeric mice, respectively. Under effective conditions, a large number of ES cell lines were established from C57BL/6J and C57BL/6N blastocysts. The majority of ES cells in many cell lines obtained from both strains showed a normal chromosome number. Germline chimeric mice were generated from C57BL/6J and C57BL/6N ES cells. Finally, the ES cell line B6J-S1UTR, derived from C57BL/6J, was used for successful production of gene knockout mice. C57BL/6J ES (B6J-S1UTR and B6J-23UTR) and C57BL/6N ES (B6N-22UTR) cells are available from the cell bank of the BioResource Center at RIKEN Tsukuba Institute (http://www.brc.riken.jp/lab/cell/english/).  相似文献   

15.
Liu LT  Huang B  Li CQ  Zhuang Y  Wang J  Zhou Y 《PloS one》2011,6(10):e26285
Mesenchymal stem cells (MSCs) derived from adult tissues are an important candidate for cell-based therapies and regenerative medicine due to their multipotential differentiation capability. MSCs have been identified in many adult tissues but have not reported in the human intervertebral disc cartilage endplate (CEP). The initial purpose of this study was to determine whether MSCs exist in the degenerated human CEP. Next, the morphology, proliferation capacity, cell cycle, cell surface epitope profile and differentiation capacity of these CEP-derived stem cells (CESCs) were compared with bone-marrow MSCs (BM-MSCs). Lastly, whether CESCs are a suitable candidate for BM-MSCs was evaluated. Isolated cells from degenerated human CEP were seeded in an agarose suspension culture system to screen the proliferative cell clusters. Cell clusters were chosen and expanded in vitro and were compared with BM-MSCs derived from the same patient. The morphology, proliferation rate, cell cycle, immunophenotype and stem cell gene expression of the CESCs were similar to BM-MSCs. In addition, the CESCs could be induced into osteoblasts, adipocytes, chondrocytes, and are superior to BM-MSCs in terms of osteogenesis and chondrogenesis. This study is first to demonstrate the presence of stem cells in the human degenerated CEP. These results may improve our understanding of intervertebral disc (IVD) pathophysiology and the degeneration process, and could provide cell candidates for cell-based regenerative medicine and tissue engineering.  相似文献   

16.
17.
Mesenchymal stromal cells (MSCs), also called mesenchymal stem cells, migrate and function as stromal cells in tumor tissues. The effects of MSCs on tumor growth are controversial. In this study, we showed that MSCs increase proliferation of tumor cells in vitro and promote tumor growth in vivo. We also further analyzed the mechanisms that underlie these effects. For use in in vitro and in vivo experiments, we established a bone marrow-derived mesenchymal stromal cell line from cells isolated in C57BL/6 mice. Effects of murine MSCs on tumor cell proliferation in vitro were analyzed in a coculture model with B16-LacZ cells. Both coculture with MSCs and treatment with MSC-conditioned media led to enhanced growth of B16-LacZ cells, although the magnitude of growth stimulation in cocultured cells was greater than that of cells treated with conditioned media. Co-injection of B16-LacZ cells and MSCs into syngeneic mice led to increased tumor size compared with injection of B16-LacZ cells alone. Identical experiments using Lewis lung carcinoma (LLC) cells instead of B16-LacZ cells yielded similar results. Consistent with a role for neovascularization in MSC-mediated tumor growth, tumor vessel area was greater in tumors resulting from co-injection of B16-LacZ cells or LLCs with MSCs than in tumors induced by injection of cancer cells alone. Co-injected MSCs directly supported the tumor vasculature by localizing close to vascular walls and by expressing an endothelial marker. Furthermore, secretion of leukemia inhibitory factor, macrophage colony-stimulating factor, macrophage inflammatory protein-2 and vascular endothelial growth factor was increased in cocultures of MSCs and B16-LacZ cells compared with B16-LacZ cells alone. Together, these results indicate that MSCs promote tumor growth both in vitro and in vivo and suggest that tumor promotion in vivo may be attributable in part to enhanced angiogenesis.  相似文献   

18.
Several reports have suggested that mesenchymal stem cells (MSCs) could exert a potent immunosuppressive effect in vitro, and thus may have a therapeutic potential for T cell-dependent pathologies. We aimed to establish whether MSCs could be used to control graft-vs-host disease (GVHD), a major cause of morbidity and mortality after allogeneic hemopoietic stem cell transplantation. From C57BL/6 and BALB/c mouse bone marrow cells, we purified and expanded MSCs characterized by the lack of expression of CD45 and CD11b molecules, their typical spindle-shaped morphology, together with their ability to differentiate into osteogenic, chondrogenic, and adipogenic cells. These MSCs suppressed alloantigen-induced T cell proliferation in vitro in a dose-dependent manner, independently of their MHC haplotype. However, when MSCs were added to a bone marrow transplant at a MSCs:T cells ratio that provided a strong inhibition of the allogeneic responses in vitro, they yielded no clinical benefit on the incidence or severity of GVHD. The absence of clinical effect was not due to MSC rejection because they still could be detected in grafted animals, but rather to an absence of suppressive effect on donor T cell division in vivo. Thus, in these murine models, experimental data do not support a significant immunosuppressive effect of MSCs in vivo for the treatment of GVHD.  相似文献   

19.
The objective of the study is to evaluate efficiency of in vitro isolation and myogenic differentiation of mesenchymal stem cells (MSCs) derived from adipose connective tissue (AD-MSCs), bone marrow (BM-MSCs), and skeletal muscle tissue (MC-MSCs). MSCs were isolated from adipose connective tissue, bone marrow, and skeletal muscle tissue of two adult 6-wk-old rats. Cultured MSCs were treated with 5-azacytidine (AZA) to induce myogenic differentiation. Isolated MSCs and differentiated cells were evaluated by immunocytochemistry (ICC), fluorescence-activated cell sorting (FACS), PCR, and RT-PCR. AD-MSCs showed the highest proliferation rate while BM-MSCs had the lowest one. In ICC, isolated MSCs had strong CD90- and CD44-positive expression and negative expression of CD45, CD31, and CD34, while AZA-treated MSCs had strong positive desmin expression. In FACS analysis, AD-MSCs had the highest percentage of CD90- and CD44-positive-expressing cells (99% and 96%) followed by BM-MSCs (97% and 94%) and MC-MSCs (92% and 91%).At 1 wk after incubation with AZA treatment, the peak of myogenin expression reached 93% in differentiated MC-MSCs, 83.3% in BM-MSCs, and 77% in AD-MSCs. MSCs isolated from adipose connective tissue, bone marrow, and skeletal muscle tissue have the same morphology and phenotype, but AD-MSCs were the most easily accessible and had the highest rate of growth on cultivation and the highest percentage of stem cell marker expression. Moreover, although MC-MSCs showed the highest rate of myogenic differentiation potential and expression of myoblast markers, AD-MSCs and BM-MSCs still can be valuable alternatives. The differentiated myoblastic cells could be an available new choice for myoblastic auto-transplantation in regeneration medicine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号