首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The S phase-specific activation of NEIL1 and not of the other DNA glycosylases responsible for repairing oxidatively damaged bases in mammalian genomes and the activation of NEIL1 by proliferating cell nuclear antigen (PCNA) suggested preferential action by NEIL1 in oxidized base repair during DNA replication. Here we show that NEIL1 interacts with flap endonuclease 1 (FEN-1), an essential component of the DNA replication. FEN-1 is present in the NEIL1 immunocomplex isolated from human cell extracts, and the two proteins colocalize in the nucleus. FEN-1 stimulates the activity of NEIL1 in vitro in excising 5-hydroxyuracil from duplex, bubble, forked, and single-stranded DNA substrates by up to 5-fold. The disordered region near the C terminus of NEIL1, which is dispensable for activity, is necessary and sufficient for high affinity binding to FEN-1 (K(D) approximately = 0.2 microm). The interacting interface of FEN-1 is localized in its disordered C-terminal region uniquely present in mammalian orthologs. Fine structure mapping identified several Lys and Arg residues in this region that form salt bridges with Asp and Glu residues in NEIL1. NEIL1 was previously shown to initiate single nucleotide excision repair, which does not require FEN-1 or PCNA. The present study shows that NEIL1 could also participate in strand displacement repair synthesis (long patch repair (LP-BER)) mediated by FEN-1 and stimulated by PCNA. Interaction between NEIL1 and FEN-1 is essential for efficient NEIL1-initiated LP-BER. These studies strongly implicate NEIL1 in a distinct subpathway of LP-BER in replicating genomes.  相似文献   

4.
The recently characterized enzyme NEIL2 (Nei-like-2), one of the four oxidized base-specific DNA glycosylases (OGG1, NTH1, NEIL1, and NEIL2) in mammalian cells, has poor base excision activity from duplex DNA. To test the possibility that one or more proteins modulate its activity in vivo, we performed mass spectrometric analysis of the NEIL2 immunocomplex and identified Y box-binding (YB-1) protein as a stably interacting partner of NEIL2. We show here that YB-1 not only interacts physically with NEIL2, but it also cooperates functionally by stimulating its base excision activity by 7-fold. Moreover, YB-1 interacts with the other NEIL2-associated BER proteins, namely, DNA ligase III alpha and DNA polymerase beta and thus could form a large multiprotein complex. YB-1, normally present in the cytoplasm, translocates to the nucleus during UVA-induced oxidative stress, concomitant with its increased association with and activation of NEIL2. NEIL2-initiated base excision activity is significantly reduced in YB-1-depleted cells. YB-1 thus appears to have a novel regulatory role in NEIL2-mediated repair under oxidative stress.  相似文献   

5.
8-Oxoguanine (8-oxoG) is an unstable mutagenic DNA lesion that is prone to further oxidation. High valent metals such as Cr(V) and Ir(IV) readily oxidize 8-oxoG to form guanidinohydantoin (Gh), its isomer iminoallantoin (Ia), and spiroiminodihydantoin (Sp). When present in DNA, these lesions show enhanced base misincorporation over the parent 8-oxoG lesion leading to G --> T and G --> C transversion mutations and polymerase arrest. These findings suggested that further oxidized lesions of 8-oxoG are more mutagenic and toxic than 8-oxoG itself. Repair of oxidatively damaged bases, including Sp and Gh/Ia, are initiated by the base excision repair (BER) system that involves the DNA glycosylases Fpg, Nei, and Nth in E. coli. Mammalian homologs of two of these BER enzymes, OGG1 and NTH1, have little or no affinity for Gh/Ia and Sp. Herein we report that two recently identified mammalian glycosylases, NEIL1 and NEIL2, showed a high affinity for recognition and cleavage of DNA containing Gh/Ia and Sp lesions. NEIL1 and NEIL2 recognized both of these lesions in single-stranded DNA and catalyzed the removal of the lesions through a beta- and delta-elimination mechanism. NEIL1 and NEIL2 also recognized and excised the Gh/Ia lesion opposite all four natural bases in double-stranded DNA. NEIL1 was able to excise the Sp lesion opposite the four natural bases in double-stranded DNA, however, NEIL2 showed little cleavage activity against the Sp lesion in duplex DNA although DNA trapping studies show recognition and binding of NEIL2 to this lesion. This work suggests that NEIL1 and NEIL2 are essential in the recognition of further oxidized lesions arising from 8-oxoG and implies that these BER glycosylases may play an important role in the repair of DNA damage induced by carcinogenic metals.  相似文献   

6.
7.
The paradigm for repair of oxidized base lesions in genomes via the base excision repair (BER) pathway is based on studies in Escherichia coli, in which AP endonuclease (APE) removes all 3' blocking groups (including 3' phosphate) generated by DNA glycosylase/AP lyases after base excision. The recently discovered mammalian DNA glycosylase/AP lyases, NEIL1 and NEIL2, unlike the previously characterized OGG1 and NTH1, generate DNA strand breaks with 3' phosphate termini. Here we show that in mammalian cells, removal of the 3' phosphate is dependent on polynucleotide kinase (PNK), and not APE. NEIL1 stably interacts with other BER proteins, DNA polymerase beta (pol beta) and DNA ligase IIIalpha. The complex of NEIL1, pol beta, and DNA ligase IIIalpha together with PNK suggests coordination of NEIL1-initiated repair. That NEIL1/PNK could also repair the products of other DNA glycosylases suggests a broad role for this APE-independent BER pathway in mammals.  相似文献   

8.
Dyshomeostasis of transition metals iron and copper as well as accumulation of oxidative DNA damage have been implicated in multitude of human neurodegenerative diseases, including Alzheimer disease and Parkinson disease. These metals oxidize DNA bases by generating reactive oxygen species. Most oxidized bases in mammalian genomes are repaired via the base excision repair pathway, initiated with one of four major DNA glycosylases: NTH1 or OGG1 (of the Nth family) or NEIL1 or NEIL2 (of the Nei family). Here we show that Fe(II/III) and Cu(II) at physiological levels bind to NEIL1 and NEIL2 to alter their secondary structure and strongly inhibit repair of mutagenic 5-hydroxyuracil, a common cytosine oxidation product, both in vitro and in neuroblastoma (SH-SY5Y) cell extract by affecting the base excision and AP lyase activities of NEILs. The specificity of iron/copper inhibition of NEILs is indicated by a lack of similar inhibition of OGG1, which also indicated that the inhibition is due to metal binding to the enzymes and not DNA. Fluorescence and surface plasmon resonance studies show submicromolar binding of copper/iron to NEILs but not OGG1. Furthermore, Fe(II) inhibits the interaction of NEIL1 with downstream base excision repair proteins DNA polymerase β and flap endonuclease-1 by 4–6-fold. These results indicate that iron/copper overload in the neurodegenerative diseases could act as a double-edged sword by both increasing oxidative genome damage and preventing their repair. Interestingly, specific chelators, including the natural chemopreventive compound curcumin, reverse the inhibition of NEILs both in vitro and in cells, suggesting their therapeutic potential.  相似文献   

9.
High metabolic activity and low levels of antioxidant enzymes make neurons particularly prone to damage by reactive oxygen species. Thus, repair of oxidative DNA damage is essential for normal brain function. Base excision repair is the major pathway for repair of oxidative DNA damage, and is initiated by DNA glycosylases recognizing and removing the damaged base. In mammalian cells at least five different DNA glycosylases with overlapping substrate specificity, NEIL1, NEIL2, NEIL3, OGG1 and NTH1, remove oxidative DNA base lesions. Here we report mRNA expression and distribution of these five DNA glycosylases in human and rodent brains using in situ hybridization and Northern blotting supported by glycosylase activity assays. NEIL1, NEIL2, OGG1 and NTH1 showed widespread expression at all ages. In situ hybridization studies in mouse brain showed that expression of mNeil1 increased with age. In newborn mouse brain, mNeil3 revealed a discrete expression pattern in brain regions known to harbour stem cell populations, i.e., the subventricular zone, the rostral migratory stream, and the hilar region of the hippocampal formation. Expression of mNeil3 decreased with age, and in old mice brains could be detected only in layer V of neocortex. MNth1 was constitutively expressed during lifespan. In Northern blots, mOgg1 expression showed a transient decrease followed by an increase after 8 weeks of age. Assays for faPy DNA glycosylase activity revealed increased activity level with age in all brain regions analyzed. The widespread but differential expression of the DNA glycosylases recognizing oxidative base lesions suggests distinct and age dependent roles of these enzymes in genome maintenance in brain. The distribution of mNeil3 is particularly intriguing and points to a specific role of this enzyme in stem cell differentiation.  相似文献   

10.
Mokkapati SK  Wiederhold L  Hazra TK  Mitra S 《Biochemistry》2004,43(36):11596-11604
The eukaryotic 8-oxoguanine-DNA glycosylase 1 (OGG1) provides the major activity for repairing mutagenic 7,8-dihydro-8-oxoguanine (8-oxoG) induced in the genome due to oxidative stress. Earlier in vitro studies showed that, after excising the base lesion, the human OGG1 remains bound to the resulting abasic (AP) site in DNA and does not turn over efficiently. The human AP-endonuclease (APE1), which cleaves the phosphodiester bond 5' to the AP site, in the next step of repair, displaces the bound OGG1 and thus increases its turnover. Here we show that NEIL1, a DNA glycosylase/AP lyase specific for many oxidized bases but with weak 8-oxoG excision activity, stimulates turnover of OGG1 in a fashion similar to that of APE1 and carries out betadelta-elimination at the AP site. This novel collaboration of two DNA glycosylases, which do not stably interact with each other, in stimulating 8-oxoguanine repair is possible because of higher AP site affinity and stronger AP lyase activity of NEIL1 relative to OGG1. Comparable levels of NEIL1 and OGG1 in some human cells raise the possibility that NEIL1 serves as a backup enzyme to APE1 in stimulating 8-oxoG repair in vivo.  相似文献   

11.
The oxidatively induced DNA lesions 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) and 4,6-diamino-5-formamidopyrimidine (FapyA) are formed abundantly in DNA of cultured cells or tissues exposed to ionizing radiation or to other free radical-generating systems. In vitro studies indicate that these lesions are miscoding, can block the progression of DNA polymerases, and are substrates for base excision repair. However, no study has yet addressed how these lesions are metabolized in cellular extracts. The synthesis of oligonucleotides containing FapyG and FapyA at defined positions was recently reported. These constructs allowed us to investigate the repair of Fapy lesions in nuclear and mitochondrial extracts from wild type and knock-out mice lacking the two major DNA glycosylases for repair of oxidative DNA damage, OGG1 and NTH1. The background level of FapyG/FapyA in DNA from these mice was also determined. Endogenous FapyG levels in liver DNA from wild type mice were significantly higher than 8-hydroxyguanine levels. FapyG and FapyA were efficiently repaired in nuclear and mitochondrial extracts from wild type animals but not in the glycosylase-deficient mice. Our results indicated that OGG1 and NTH1 are the major DNA glycosylases for the removal of FapyG and FapyA, respectively. Tissue-specific analysis suggested that other DNA glycosylases may contribute to FapyA repair when NTH1 is poorly expressed. We identified NEIL1 in liver mitochondria, which could account for the residual incision activity in the absence of OGG1 and NTH1. FapyG and FapyA levels were significantly elevated in DNA from the knock-out mice, underscoring the biological role of OGG1 and NTH1 in the repair of these lesions.  相似文献   

12.
13.
DNA glycosylases/AP lyases initiate repair of oxidized bases in the genomes of all organisms by excising these lesions and then cleaving the DNA strand at the resulting abasic (AP) sites and generate 3' phospho alpha,beta-unsaturated aldehyde (3' PUA) or 3' phosphate (3' P) terminus. In Escherichia coli, the AP-endonucleases (APEs) hydrolyze both 3' blocking groups (3' PUA and 3' P) to generate the 3'-OH termini needed for repair synthesis. In mammalian cells, the previously characterized DNA glycosylases, NTH1 and OGG1, produce 3' PUA, which is removed by the only AP-endonuclease, APE1. However, APE1 is barely active in removing 3' phosphate generated by the recently discovered mammalian DNA glycosylases NEIL1 and NEIL2. We showed earlier that the 3' phosphate generated by NEIL1 is efficiently removed by polynucleotide kinase (PNK) and not APE1. Here we show that the NEIL2-initiated repair of 5-hydroxyuracil (5-OHU) similarly requires PNK. We have also observed stable interaction between NEIL2 and other BER proteins DNA polymerase beta (Pol beta), DNA ligase IIIalpha (Lig IIIalpha) and XRCC1. In spite of their limited sequence homology, NEIL1 and NEIL2 interact with the same domains of Pol beta and Lig IIIalpha. Surprisingly, while the catalytically dispensable C-terminal region of NEIL1 is the common interacting domain, the essential N-terminal segment of NEIL2 is involved in analogous interaction. The BER proteins including NEIL2, PNK, Pol beta, Lig IIIalpha and XRCC1 (but not APE1) could be isolated as a complex from human cells, competent for repair of 5-OHU in plasmid DNA.  相似文献   

14.
The telomeric DNA of vertebrates consists of d(TTAGGG)n tandem repeats, which can form quadruplex DNA structures in vitro and likely in vivo. Despite the fact that the G-rich telomeric DNA is susceptible to oxidation, few biochemical studies of base excision repair in telomeric DNA and quadruplex structures have been done. Here, we show that telomeric DNA containing thymine glycol (Tg), 8-oxo-7,8-dihydroguanine (8-oxoG), guanidinohydantoin (Gh), or spiroiminodihydantoin (Sp) can form quadruplex DNA structures in vitro. We have tested the base excision activities of five mammalian DNA glycosylases (NEIL1, NEIL2, mNeil3, NTH1, and OGG1) on these lesion-containing quadruplex substrates and found that only mNeil3 had excision activity on Tg in quadruplex DNA and that the glycosylase exhibited a strong preference for Tg in the telomeric sequence context. Although Sp and Gh in quadruplex DNA were good substrates for mNeil3 and NEIL1, none of the glycosylases had activity on quadruplex DNA containing 8-oxoG. In addition, NEIL1 but not mNeil3 showed enhanced glycosylase activity on Gh in the telomeric sequence context. These data suggest that one role for Neil3 and NEIL1 is to repair DNA base damages in telomeres in vivo and that Neil3 and Neil1 may function in quadruplex-mediated cellular events, such as gene regulation via removal of damaged bases from quadruplex DNA.  相似文献   

15.
Following the formation of oxidatively-induced DNA damage, several DNA glycosylases are required to initiate repair of the base lesions that are formed. Recently, NEIL1 and other DNA glycosylases, including OGG1 and NTH1 were identified as potential targets in combination chemotherapeutic strategies. The potential therapeutic benefit for the inhibition of DNA glycosylases was validated by demonstrating synthetic lethality with drugs that are commonly used to limit DNA replication through dNTP pool depletion via inhibition of thymidylate synthetase and dihydrofolate reductase. Additionally, NEIL1-associated synthetic lethality has been achieved in combination with Fanconi anemia, group G. As a prelude to the development of strategies to exploit the potential benefits of DNA glycosylase inhibition, it was necessary to develop a reliable high-throughput screening protocol for this class of enzymes. Using NEIL1 as the proof-of-principle glycosylase, a fluorescence-based assay was developed that utilizes incision of site-specifically modified oligodeoxynucleotides to detect enzymatic activity. This assay was miniaturized to a 1536-well format and used to screen small molecule libraries for inhibitors of the combined glycosylase/AP lyase activities. Among the top hits of these screens were several purine analogs, whose postulated presence in the active site of NEIL1 was consistent with the paradigm of NEIL1 recognition and excision of damaged purines. Although a subset of these small molecules could inhibit other DNA glycosylases that excise oxidatively-induced DNA adducts, they could not inhibit a pyrimidine dimer-specific glycosylase.  相似文献   

16.
The human DNA glycosylase NEIL1, activated during the S-phase, has been shown to excise oxidized base lesions in single-strand DNA substrates. Furthermore, our previous work demonstrating functional interaction of NEIL1 with PCNA and flap endonuclease 1 (FEN1) suggested its involvement in replication-associated repair. Here we show interaction of NEIL1 with replication protein A (RPA), the heterotrimeric single-strand DNA binding protein that is essential for replication and other DNA transactions. The NEIL1 immunocomplex isolated from human cells contains RPA, and its abundance in the complex increases after exposure to oxidative stress. NEIL1 directly interacts with the large subunit of RPA (Kd ~20 nM) via the common interacting interface (residues 312–349) in NEIL1's disordered C-terminal region. RPA inhibits the base excision activity of both wild-type NEIL1 (389 residues) and its C-terminal deletion CΔ78 mutant (lacking the interaction domain) for repairing 5-hydroxyuracil (5-OHU) in a primer-template structure mimicking the DNA replication fork. This inhibition is reduced when the damage is located near the primer-template junction. Contrarily, RPA moderately stimulates wild-type NEIL1 but not the CΔ78 mutant when 5-OHU is located within the duplex region. While NEIL1 is inhibited by both RPA and Escherichia coli single-strand DNA binding protein, only inhibition by RPA is relieved by PCNA. These results showing modulation of NEIL1's activity on single-stranded DNA substrate by RPA and PCNA support NEIL1's involvement in repairing the replicating genome.  相似文献   

17.
8-Oxo-7,8-dihydroguanine (8-oxo-Gua, also known as 8-hydroxyguanine) is a major base lesion that is generated by reactive oxygen species in both the DNA and nucleotide pool. The role of DNA glycosylases, which initiate base excision repair, in the mutagenic processes of 8-oxo-Gua in DNA and 8-oxo-7,8-dihydro-2′-deoxyguanosine 5′-triphosphate (8-oxo-dGTP, also known as 8-hydroxy-2′-deoxyguanosine 5′-triphosphate) were investigated using supF shuttle plasmids propagated in human cells. The DNA glycosylases, OGG1, MUTYH, NTH1, and NEIL1, in 293T cells were individually knocked-down by siRNAs and plasmid DNAs containing an 8-oxo-Gua:C/8-oxo-Gua:A pair, and 8-oxo-dGTP plus unmodified plasmid DNA were then introduced into the knocked-down cells. The knock-down of OGG1, MUTYH, NTH1, and NEIL1 resulted in a significant increase in G:C  T:A transversions caused by the 8-oxo-Gua:C pair in the shuttle plasmid. The knock-down of MUTYH resulted in a reduction in A:T  C:G transversions induced by 8-oxo-dGTP and the 8-oxo-Gua:A pair, but the knockdown of OGG1, NTH1, and NEIL1 had no effect on mutagenesis. These results indicate that all of the above DNA glycosylases suppress mutations caused by 8-oxo-Gua:C in DNA. In contrast, it appears that MUTYH enhances A:T  C:G mutations caused by 8-oxo-dGTP.  相似文献   

18.
19.
Base excision repair is the major pathway for the repair of oxidative DNA damage in human cells that is initiated by a damage-specific DNA glycosylase. In human cells, the major DNA glycosylases for the excision of oxidative base damage are OGG1 and NTH1 that excise 8-oxoguanine and oxidative pyrimidines, respectively. We find that both enzymes have limited activity on DNA lesions located in the vicinity of the 3′ end of a DNA single-strand break, suggesting that other enzymes are involved in the processing of such lesions. In this study, we identify and characterize NEIL1 as a major DNA glycosylase that excises oxidative base damage located in close proximity to the 3′ end of a DNA single-strand break.  相似文献   

20.
Base excision repair of oxidized DNA in human cells is initiated by several DNA glycosylases with overlapping substrate specificity. The human endonuclease VIII homologue NEIL1 removes a broad spectrum of oxidized pyrimidine and purine lesions. In this study of NEIL1 we have identified several key residues, located in three loops lining the DNA binding cavity, important for lesion recognition and DNA glycosylase/AP lyase activity for oxidized bases in double-stranded and single-stranded DNA. Single-turnover kinetics of NEIL1 revealed that removal of 5-hydroxycytosine (5-OHC) and 5-hydroxyuracil (5-OHU) is ~25 and ~10-fold faster in duplex DNA compared to single-stranded DNA, respectively, and also faster than removal of dihydrothymine (DHT) and dihydrouracil (DHU), both in double-stranded and single-stranded DNA. NEIL1 excised 8-oxoguanine (8-oxoG) only from double-stranded DNA and analysis of site-specific mutants revealed that Met81, Arg119 and Phe120 are essential for removal of 8-oxoG. Further, several arginine and histidine residues located in the loop connecting the two β-strands forming the zincless finger motif and projecting into the DNA major groove, were shown to be imperative for lesion processing for both single- and double-stranded substrates. Trapping experiments of active site mutants revealed that the N-terminal Pro2 and Lys54 can alternate to form a Schiff-base complex between the protein and DNA. Hence, both Pro2 and Lys54 are involved in the AP lyase activity. While wildtype NEIL1 activity almost exclusively generated a δ-elimination product when processing single-stranded substrates, substitution of Lys54 changed this in favor of a β-elimination product. These results suggest that Pro2 and Lys54 are both essential for the concerted action of the β,δ-elimination in NEIL1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号