首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Succinic acid, derived from fermentation of agricultural carbohydrates, has a specialty chemical market in industries producing food and pharmaceutical products, surfactants and detergents, green solvents and biodegradable plastics, and ingredients to stimulate animal and plant growth. As a carbon-intermediate chemical, fermentation-derived succinate has the potential to supply over 2.7 × 108 kg industrial products/year including: 1,4-butanediol, tetrahydrofuran, γ-butyrolactone, adipic acid, n-methylpyrrolidone and linear aliphatic esters. Succinate yields as high as 110 g/l have been achieved from glucose by the newly discovered rumen organism Actinobacillus succinogenes. Succinate fermentation is a novel process because the greenhouse gas CO2 is fixed into succinate during glucose fermentation. New developments in end-product recovery technology, including water-splitting electrodialysis and liquid/liquid extraction have lowered the cost of succinic acid production to U.S. $ 0.55/kg at the 75 000 tonne/year level and to $ 2.20/kg at the 5000 tonne/year level. Research directions aimed at further improving the succinate fermentation economics are discussed. Received: 27 October 1998 / Received revision: 22 January 1999 / Accepted: 22 January 1999  相似文献   

2.
The action of antibiotics on the anaerobic digestion process   总被引:3,自引:0,他引:3  
Antibiotics can disturb the production of biogas during anaerobic digestion. This study shows a systematic approach to understanding how the different bacterial populations involved in the final conversion of organic matter into methane are inhibited by 15 antimicrobial agents with different specificities and modes of action. The results obtained show the following trends: (i) some inhibitors, such as the macrolide erythromycin, lack any inhibitory effect on biogas production; (ii) some antibiotics, with different specificities, have partial inhibitory effects on anaerobic digestion and decrease methane production by interfering with the activity of propionic-acid- and butyric-acid-degrading bacteria,␣(e.g. antibiotics that interfere with cell wall synthesis, RNA polymerase activity and protein synthesis, especially the aminoglycosides); (iii) the protein synthesis inhibitors chlortetracycline (IC50 40 mg l−1) and chloramphenicol (IC50 15–20 mg l−1) are very powerful inhibitors of anaerobic digestion. The majority of the antibiotics tested lacked activity against acetoclastic methanogens, being active only on the acetogenic bacteria. However, chloramphenicol and chlortetracycline could cause the complete inhibition of the acetoclastic methanogenic archaea. Received: 6 February 1996 / Received revision: 24 July 1996 / Accepted: 5 August 1996  相似文献   

3.
Growth of Streptomyces clavuligerus NP1 in the presence of methanol or ethanol resulted in a marked increase in production of cephalosporin(s) from penicillin G by resting cells. The mycelium produced in alcohol-supplemented medium was fragmented and dispersed as compared with growth in control medium. HPLC analysis showed that at least two products were present in the biotransformation supernatant fluid after 1 h incubation. One of them has been identified as deacetoxycephalosporin G (DAOG). Received: 9 December 1998 / Received revision: 29 March 1999 / Accepted: 16 April 1999  相似文献   

4.
The effect of glucose on growth and anthracycline production by Streptomyces peucetius var. caesius was examined in a chemically defined medium. Glucose concentrations above 100 mM inhibited anthracycline synthesis in the original strain without causing significant change in growth and final pH values. This effect was observed when the carbohydrate was added initially or after 24 h fermentation, but not when added during the stationary growth phase. When the microorganism was pregrown in 100 mM glucose and then transferred to a resting cell system with 444 mM glucose, no significant differences in antibiotic production were observed compared to the control without glucose. The negative effect of glucose on antibiotic synthesis was not observed in a mutant (2-dogR–21) resistant to growth inhibition by 2-deoxyglucose. Glucose consumption by this mutant was approximately 30% of that utilized by the original strain. Compared to the original strain, the mutant 2-dogR–21 exhibited a reduction of 50% in glucose transport and an 85% decrease in glucose kinase activity. The experimental evidence obtained suggests that glucose represses anthracycline formation in a transitory manner and that this effect is related to glucose transport and phosphorylation. Received: 15 January 1999 / Received revision: 7 April 1999 / Accepted: 1 May 1999  相似文献   

5.
Reactions of pentachlorophenol with laccase from Coriolus versicolor   总被引:3,自引:0,他引:3  
Laccase, purified from Coriolus versicolor, removed pentachlorophenol (PCP) from solution at pH 5, depending on initial PCP concentration and amount of laccase. With 100 units of laccase, 100% of 25 μg ml−1 PCP and 60% of 200 μg ml−1 PCP were removed respectively over 72 h. No free chloride was released in the reaction. In reaction with 100 μg PCP, products were primarily polymers (about 80,000 MW) with only 2–3 pg of o- and p-chloranils formed. Polymers were stable to acid hydrolysis and no release of PCP, or other low-molecular-weight products, was detected over several weeks. Laccase has a potential use in the biotreatment of aqueous effluents containing PCP, with polymerised products being removed from solution due to their high molecular weight. Received: 7 June 1999 / Received revision: 18 August 1999 / Accepted: 2 September 1999  相似文献   

6.
A UV-induced mutant strain of Aspergillus niger (CFTRI-1105-U9) overproduced a starch-hydrolysing enzyme with properties characteristically different from the known amylases of the fungus. The purified enzyme of 4.0 pI had an apparent molecular mass of 125 kDa and it dextrinised starch and then saccharified the dextrins. Patterns of the enzyme activity on starch, resulting in glucose at 60 °C and glucose, maltose and maltodextrins at 70 °C as primary products, suggested significant applications for the enzyme in starch-processing industries. Received: 29 October 1998 / Received revision: 11 January 1999 / Accepted: 19 January 1999  相似文献   

7.
The recently discovered non-mevalonate pathway to isoprenoids, which uses glycolytic intermediates, has been modulated by overexpression of Escherichia coli d-1-deoxyxylulose 5-phosphate synthase (DXS) to increase deoxyxylulose 5-phosphate and, consequently, increase the isoprenoid precursor pool in E. coli. Carotenoids are a large class of biologically important compounds synthesized from isoprenoid precursors and of interest for metabolic engineering. However, carotenoids are not ordinarily present in E. coli. Co-overexpression of E. coli dxs with Erwinia uredovora gene clusters encoding carotenoid biosynthetic enzymes led to an increased accumulation of the carotenoids lycopene or zeaxanthin over controls not expressing DXS. Thus, rate-controlling enzymes encoded by the carotenogenic gene clusters are responsive to an increase in isoprenoid precursor pools. Levels of accumulated carotenoids were increased up to 10.8 times the levels of controls not overexpressing DXS. Lycopene accumulated to a level as high as 1333 μg/g dw and zeaxanthin accumulated to a level as high as 592 μg/g dw, when pigments were extracted from colonies. Zeaxanthin-producing colonies grew about twice as fast as lycopene-producing colonies throughout a time course of 11 days. Metabolic engineering of carbon flow from simple glucose metabolites to representatives of the largest class of natural products was demonstrated in this model system. Received: 6 August 1999 / Received revision: 25 October 1999 / Accepted: 5 November 1999  相似文献   

8.
 The effects of alginate on the physiological activities of plant cells were studied. Addition of alginate oligomer (AO) to the suspension culture of Catharanthus roseus L. or Wasabia japonica cells promoted the production of antibiotic enzymes such as 5′-phosphodiesterase or chitinase respectively. Ajmalicine (a secondary metabolite) production by C. roseus CP3 cells was also promoted when AO was added to the suspension culture. On the basis of these results, we assumed that alginate is an elicitor-like substance. We therefore compared the effect of AO on C. roseus L. and W. japonica cells with those of chitosan oligomer (CO) and oligo-galacturonic acid (OGA), which are well known as an exogenous elicitor and endogenous elicitor respectively. The effects of various concentrations of AO, OGA, and CO on the physiological activities, membrane permeability and protoplast formation of C. roseus L. or W. japonica cells were investigated. AO and OGA showed similar physiological effects, which were quite different from those of CO. Since alginate appeared to have similar effects to galacturonic acid, we concluded that alginate acts as an endogenous elicitor. Both alginate and galacturonic acid are uronic acids, and we considered their structural similarity. The effects of esterification of the carboxylic groups of alginate by propylene oxide were also studied. The greater the degree of esterification, the less the secretion of 5′-phosphodiesterase. Hence we assumed that carboxylic groups have an important role in the initiation of the elicitation reaction in plant cells, as shown in the case of galacturonic acid. Received: 18 January 1999 / Received revision: 2 April 1999 / Accepted: 1 May 1999  相似文献   

9.
Spent Saccharomyces cerevisiae cells from a beer fermentation process were evaluated for lead cation sorption. The crude biomass was washed with water and acetone prior to any other treatment. Although the washed biomass showed substantial lead ion sorption it was susceptible to microbial spoilage. Different aldehydes were tested as chemical fixation agents; however, most of them caused drastic lowering of the metal uptake capacity. However, benzaldehyde was not only an excellent fixation agent, but the biomass treated with it also retained its original lead sorption capacity. A mechanism for the fixation process is suggested. Received: 11 January 1999 / Received revision: 26 April 1999 / Accepted: 1 May 1999  相似文献   

10.
A Gram-negative bacterial strain, identified as Acidovorax facilis strain 72W, has been isolated from soil by enrichment using 2-ethylsuccinonitrile as the sole nitrogen source. This strain grows on a variety of aliphatic mono- and dinitriles. Experiments using various heating regimes indicate that nitrile hydratase, amidase and nitrilase activities are present. The nitrilase is efficient at hydrolyzing aliphatic dinitriles to cyanoacid intermediates. It has a strong bias for C3–C6 dinitriles over mononitriles of the same chain length. Whole, resting cell hydrolysis of 2-methylglutaronitrile results in 4-cyanopentanoic acid and 2-methylglutaric acid as the major products. Heating, at least 20 min at 50 °C, eliminates nitrile hydratase and amidase activities, resulting in greater than 97% selectivity to 4-cyanopentanoic acid. The nitrilase activity has good heat stability, showing a half-life of 22.7 h at 50 °C and a temperature optimum of at least 65 °C for activity. The strain has been deposited as ATCC 55746. Received: 26 January 1999 / Received revision: 10 June 1999 / Accepted: 27 June 1999  相似文献   

11.
Nutrient requirements of lactococci in defined growth media   总被引:12,自引:0,他引:12  
Many attempts have been made for the last six decades to design defined media for species of the lactococcus group. The general outcome of the studies suggests that this group is heterogeneous with respect to specific requirements for nutrients. Lactococcal species are limited in various metabolic pathways. Early attempts to trace the required nutrients were not always successful because of the poor quality of analysis and the presence of impurities in the medium components. Received: 15 January 1999 / Received revision: 6 April 1999 / Accepted: 9 April 1999  相似文献   

12.
Dispersed pancreatic islet cells from rats were cultured overnight in the presence of macroporous gelatin microcarriers. The cells attached to the microcarriers were then incubated for 90 min in the absence or presence of 15.0 mM d-glucose and/or 1.25 mM theophylline. The release of insulin during incubation was about three times higher in the simultaneous presence of these two secretagogues than in their absence. This procedure could thus be used for the immobilization of pancreatic islet cells with preserved secretory potential. Received: 9 April 1999 / Received revision: 12 July 1999 / Accepted: 13 July 1999  相似文献   

13.
Highly substituted arenesulfonates are chemically stable compounds with a range of industrial applications, and they are widely regarded as being poorly degradable. We did enrichment cultures for bacteria able to utilise the sulfonate moiety of 14 compounds, and we obtained mixed cultures that were able to desulfonate each compound. The products formed were usually identified as the corresponding phenol, but because we could not obtain pure cultures, we followed up these findings with quantitative work in pure cultures of, e.g., Pseudomonas putida S-313, which generated the same phenols from the compounds studied. Many of these phenols are known to be biodegradable, or to be subject to binding to soil components. We thus presume that the capacity to degrade aromatic sulfonates extensively is widespread in the environment, even though the degradative capacity is spread over several organisms and conditions. Received: 9 February 1999 / Revision received: 7 April 1999 / Accepted: 9 April 1999  相似文献   

14.
Wild-type Streptomyces sp. strains, able to utilise both naturally occurring and synthetic organophosphonates, were isolated. High levels of inorganic phosphate were necessary for their growth in complete medium as well as in medium, supplemented with phosphonates as the sole carbon or nitrogen source. Isolate StA expressed detectable enzymatic activity against 2-aminoethylphosphonate in vivo. Streptomycete StC had a surprising ability to degrade N-phosphonomethylglycine (glyphosate) in a phosphate-independent manner via C–P bond cleavage accompanied by sarcosine formation. Received: 5 January 1999 / Received revision: 8 March 1999 / Accepted: 14 March 1999  相似文献   

15.
Industrial 20-m3-scale and laboratory-scale aerobic fed-batch processes with Escherichia coli were compared. In the large-scale process the observed overall biomass yield was reduced by 12% at a cell density of 33 g/l and formate accumulated to 50 mg/l during the later constant-feeding stage of the process. Though the dissolved oxygen signal did not show any oxygen limitation, it is proposed that the lowered yield and the formate accumulation are caused by mixed-acid fermentation in local zones where a high glucose concentration induced oxygen limitation. The hypothesis was further investigated in a scale-down reactor with a controlled oxygen-limitation compartment. In this scale-down reactor similar results were obtained: i.e. an observed yield lowered by 12% and formate accumulation to 238 mg/l. The dynamics of glucose uptake and mixed-acid product formation (acetate, formate, d-lactate, succinate and ethanol) were investigated within the 54 s of passage time through the oxygen-limited compartment. Of these, all except succinate and ethanol were formed; however, the products were re-assimilated in the oxygen-sufficient reactor compartment. Formate was less readily assimilated, which accounts for its accumulation. The total volume of the induced-oxygen-limited zones was estimated to be 10% of the whole liquid volume in the large bioreactor. It is also suggested that repeated excretion and re-assimilation of mixed-acid products contribute to the reduced yield during scale-up and that formate analysis is useful for detecting local oxygen deficiency in large-scale E. coli processes. Received: 7 November 1998 / Received revision: 4 February 1999 / Accepted: 5 February 1999  相似文献   

16.
Rhodococcus strain I24 is able to convert indene into indandiol via the actions of at least two dioxygenase systems and a putative monooxygenase system. We have identified a cosmid clone from I24 genomic DNA that is able to confer the ability to convert indene to indandiol upon Rhodococcus erythropolis SQ1, a strain that normally can not convert or metabolize indene. HPLC analysis reveals that the transformed SQ1 strain produces cis-(1R,2S)-indandiol, suggesting that the cosmid clone encodes a naphthalene-type dioxygenase. DNA sequence analysis of a portion of this clone confirmed the presence of genes for the dioxygenase as well as genes encoding a dehydrogenase and putative aldolase. These genes will be useful for manipulating indene bioconversion in Rhodococcus strain I24. Received: 8 December 1998 / Received revision: 26 January 1999 / Accepted: 5 February 1999  相似文献   

17.
Four antibiotics were evaluated for their effects on eliminating the hypervirulent Agrobacterium tumefaciens strain C58C1 ATHV RifR (pEHA101)/p35-gus-intron from walnut somatic embryos and on the production of secondary somatic embryos and the transformed somatic embryos. Exposure to 100–1000 mg l−1 of ampicillin, carbenicillin or cefotaxime respectively for up to 60 days did not eliminate the A. tumefaciens while timentin at 500–1000 mg l−1 eradicated it from somatic embryos. One-hour acidified medium treatments and the addition of 100 mg l−1 kanamycin to 500 mg l−1 ampicillin, carbenicillin, cefotaxime or timentin were of little help in eliminating the Agrobacterium. All four antibiotics reduced somatic embryo production, carbenicillin minimally and cefotaxime maximally, especially at higher concentrations, in comparison with antibiotic-free medium. Putative transformed embryos were selected for continued proliferation on a 100 mg l−1 kanamycin-containing medium. Histochemical assessments indicated that more gus-positive somatic embryos, particularly fully gus-positive embryos, regenerated from timentin-containing medium than from other antibiotic-containing media under equivalent conditions. Transformed embryos have been grown and converted into plants and gus activity was observed in whole plants. Received: 13 July 1999 / Revision received: 2 December 1999 / Accepted: 6 December 1999  相似文献   

18.
 Organophosphorus hydrolase (OPH) is capable of degrading a variety of pesticides and nerve agents. We have developed a versatile monitoring technique for detecting the amount of OPH during the expression and purification steps. This involves fusion of the gene for green fluorescent protein (GFP) to the 5′ end of the OPH gene and subsequent expression in Escherichia coli. The synthesized fusion protein was directly visualized due to the optical properties of GFP. Western blot analyses showed that the correct fusion protein was expressed after IPTG-induction. Also, the in vivo GFP fluorescence intensity was proportional to the OPH enzyme activity. Moreover, the OPH, which forms a dimer in its active state, retained activity while fused to GFP. Enterokinase digestion experiments showed that OPH was separated from the GFP reporter after purification via immobilized metal affinity chromatography, which in turn was monitored by fluorescence. The strategy of linking GFP to OPH has enormous potential for improving enzyme production efficiency, as well as enhancing field use, as it can be monitored at low concentrations with inexpensive instrumentation based on detecting green fluorescence. Received: 27 April 1999 / Received last revision: 18 October 1999 / Accepted: 1 November 1999  相似文献   

19.
High-density cultures of Pycnoporus cinnabarinus were tested with a view to optimisation of ferulic acid bioconversion into vanillin. The dry weight was increased fourfold by using glucose, fructose or a mixture of glucose and phospholipids as carbon source instead of maltose, the carbon source previously used. 5 mmol l−1 vanillin, i.e. 760 mg l−1, was produced over 15 days with glucose-phospholipid medium. In contrast, formation of vanillin was lower using glucose or fructose compared to the maltose control. A bioreactor (2 l) with a glucose-phospholipid medium gave a molar yield of vanillin of 61% (4 mmol l−1). An alternative strategy was to grow the fungus on a glucose or fructose medium for 3 days, then switch to maltose during the bioconversion phase: this method allowed 3.3 mmol l−1 vanillin to be obtained in 10 days. Many by-products such as methoxyhydroquinone and vanillyl alcohol were also produced. Received: 19 February 1999 / Received revision: 4 June 1999 / Accepted: 4 June 1999  相似文献   

20.
 A total of 400 yeast strains were examined for the ability to reduce ethyl 4-chloroacetoacetate (COBE) to ethyl 4-chloro-3-hydroxybutyrate (CHBE) by using acetone-dried cells in the presence of a coenzyme-recycling system in water/n-butyl acetate. We discovered some yeast strains that reduced COBE to (S)-CHBE. Heating of acetone-dried cells of the selected yeast strains increased the optical purity of the product. There may be several enzymes that can reduce COBE stereoselectively in the same yeast cells. The cultured broth of Candida magnoliae accumulated 90 g/l (S)-CHBE (96.6% enantiomeric excess, e.e.) in the presence of glucose, NADP and glucose dehydrogenase in n-butyl acetate. When these cells were heated, the stereoselectivity of the reduction increased to 99% e.e. (S)-CHBE is one of the useful chiral building blocks applicable to the synthesis of some pharmaceuticals. We expect that the cheap and industrial production of this important chiral compound will follow the discovery of this yeast strain. Received: 9 September 1998 / Received last revision: 17 February 1999 / Accepted: 5 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号