首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dietary intake of selenium (Se) has been shown to influence the development and expression of various biologic processes. This study examined the immunologic competence of lymphocytes from C57BL/6J mice maintained for 8 weeks on Se-deficient (0.02 ppm Se), normal (0.20 ppm Se, as sodium selenite), or Se-supplemented (2.00 ppm Se) Torula yeast-based diets. The ability of the cells to recognize alloantigens, to proliferate in response to stimuli, and to produce interleukin 2 (IL-2) was determined. Se deficiency significantly inhibited the ability of the lymphocytes to proliferate in response to allogeneic stimulation in the mixed lymphocyte reaction or to mitogen stimulation by phytohemagglutinin, whereas Se supplementation significantly enhanced both responses. In contrast, the amounts of IL-2 and interleukin 1 (IL-1) produced by lymphocytes and macrophages, respectively, removed from Se-deficient or Se-supplemented animals did not differ significantly from the amounts of IL-2 and IL-1 produced by cells removed from animals maintained on the control diet. These results suggest that the mechanism(s) responsible for the observed effects of Se on lymphocyte proliferation are independent of the levels of IL-2 or IL-1.  相似文献   

2.
3.
The ability of selenium (Se) to act as a redox catalyst is an important factor in understanding the biological function of selenoproteins in addition to that of GSH peroxidase. Selenocystine at micromolar levels exhibited pseudothiotransferase activity by enhancing the reduction of 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) by thiols. In contrast, selenite inhibited the reduction of DTNB by thiols. Selenite was more catalytic than selenocystine in the reduction of cytochrome c by GSH, whereas GSH peroxidase was a weak catalyst. Tissues from Se-deficient and Se-supplemented rats were assayed for activities of GSH-thiotransferase, NADPH cytochrome c reductase, formaldehyde dehydrogenase, and a hypothesized GSH cytochrome c reductase. GSH-thiotransferase activity was significantly increased in the liver of Se-deficient rats. No appreciable activity of this enzyme was found in the kidney of rats from either dietary group. No enzymatic activity for cytochrome c reduction by GSH was detected in cytosols, mitochondria, or microsomes from liver and kidney of Se-deficient or Se-supplemented rats. Formaldehyde dehydrogenase was significantly higher in liver cytosols from Se-supplemented rats than from Se-deficient rats. The higher activity was not attributed to Se-containing proteins, but to an unknown small molecular-weight factor. This study did not support the hypothesis that physiological levels of Se may be involved in sulfhydryl-disulfide exchange reactions in vivo, or that selenium may enhance cytochrome c reduction by GSH in vivo.  相似文献   

4.
Selenium (Se) is a potential anticarcinogenic nutrient, and the essential role of Se in cell growth is well recognized but certain cancer cells appear to have acquired a survival advantage under conditions of Se-deficiency. To understand the molecular basis of Se-anticancer effects at nutritional doses (nmol/L) for cultured cells, we generated Se-deficient colon Caco-2 cells by gradually reducing serum in media because serum contains a trace amount of Se. The glutathione peroxidase (GPx) activity of Se-deficient Caco-2 cells was 10.8 mU/mg protein compared to 133.6 approximately 146.3 mU/mg protein in Caco-2 cells supplemented with 500 nmol/L selenite, SeMSC or SeMet (three tested Se-chemical forms) after 7-d culture in serum free media. Interestingly, there were no detectable differences in cell growth, cell cycle progression between Se-deficient cells and cells supplemented with 500 nmol/L Se. To examine differential cancer signaling-gene expression between Se-deficient and Se-supplemented cells, we employed a cancer signal pathway-specific array assay coupled with the real time PCR analysis. Our data demonstrate that although Caco-2 cells are resistant to Se deprivation, Se may exert its anticancer property through increasing the expression of humoral defense gene (A2M) and tumor suppressor-related genes (IGFBP3, HHIP) while decreasing pro-inflammatory gene (CXC L9, HSPB2) expression.  相似文献   

5.
Two groups of weanling Sprague-Dawley rats were fed a low-selenium basal diet (Se 0.009 mg/kg) and the same diet supplemented with sodium selenite (Se 0.25 mg/kg), respectively, for 1, 2, and 3 months. At each feeding time, the Ca2+-ATPase activity, Ca2+ uptake rate and the capacity of Ca2+ uptake in isolated cardiac sacroplasmic reticulum from the Se-deficient rats were decreased significantly compared to those from the Se-supplemented rats, the contents of lipid peroxide in postmitochondrial supernatant and isolated sarcoplasmic reticulum from the Se-deficient rats were significantly higher than that from Se-supplemented rats. Compared to the Se-supplemented rats, the cytosolic glutathione peroxidase activity in Se-deficient rats decreased significantly. In addition, significant linear negative correlations of lipid peroxide in postmitochondrial supernatant to sarcoplasmic reticular Ca2+-ATPase activity, Ca2+ uptake rate and to whole blood selenium concentration were observed. The results suggest that the enhancement of lipid peroxidation via the depressed glutathione peroxidase activity might be responsible for the decrease of Ca2+-ATPase and Ca2+ uptake activities in sarcoplasmic reticulum in Se-deficient animals.  相似文献   

6.
Oxidative stress plays a pivotal role in uncontrolled neuro-inflammation leading to many neurological diseases including Alzheimer’s. One of the major antioxidant enzymes known to prevent deleterious effects due to oxidative stress is Cu,Zn-superoxide dismutase (SOD). In this study, we examined the regulatory function of SOD on the LPS-induced signaling pathways leading to NF-kappaB activation, expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in BV-2 cells using cell-permeable SOD. Treatment of BV-2 cells with cell-permeable SOD led to a decrease in LPS-induced reactive oxygen species (ROS) generation and significantly inhibited protein and mRNA levels of iNOS and COX-2 upregulated by LPS. Production of NO and PGE2 in LPS stimulated BV-2 cells was significantly abrogated by pretreatment with a cell-permeable SOD fusion protein. Furthermore, cell-permeable SOD inhibited LPS-induced NF-kappaB DNA-binding activity and activation of MAP kinases including ERK, JNK, and p38 in BV-2 cells. These data indicate that SOD has a regulatory function for LPS-induced NF-kappaB activation leading to expression of iNOS and COX-2 in BV-2 cells and suggest that cell-permeable SOD is a feasible therapeutic agent for regulation of ROS-related neurological diseases.  相似文献   

7.
Second-generation selenium-deficient weanling rats fed graded levels of dietary Se were used (a) to study the impact of initial Se deficiency on dietary Se requirements; (b) to determine if further decreases in selenoperoxidase expression, especially glutathione peroxidase 4 (Gpx4), affect growth or gross disease; and (c) to examine the impact of vitamin E deficiency on biochemical and molecular biomarkers of Se status. Rats were fed a vitamin E-deficient and Se-deficient crystalline amino acid diet (3 ng Se/g diet) or that diet supplemented with 100 μg/g all-rac-α-tocopheryl acetate and/or 0, 0.02, 0.05, 0.075, 0.1, or 0.2 μg Se/g diet as Na2SeO3 for 28 days. Se-supplemented rats grew 6.91 g/day as compared to 2.17 and 3.87 g/day for vitamin E-deficient/Se-deficient and vitamin E-supplemented/Se-deficient groups, respectively. In Se-deficient rats, liver Se, plasma Gpx3, red blood cell Gpx1, liver Gpx1 and Gpx4 activities, and liver Gpx1 mRNA levels decreased to <1, <1, 21, 1.6, 49, and 11 %, respectively, of levels in rats fed 0.2 μg Se/g diet. For all biomarkers, ANOVA indicated significant effects of dietary Se, but no significant effects of vitamin E or vitamin E × Se interaction, showing that vitamin E deficiency, even in severely Se-deficient rat pups, does not result in compensatory changes in these biochemical and molecular biomarkers of selenoprotein expression. Se requirements determined in this study, however, were >50 % higher than in previous studies that started with Se-adequate rats, demonstrating that dietary Se requirements determined using initially Se-deficient animals can result in overestimation of Se requirements.  相似文献   

8.
Selenium (Se) is an essential nutritional factor with a chemopreventive potential. This study examined the ability of C57BL/6J mice, maintained for 8 weeks on Se-deficient (0.02 ppm Se), normal (0.20 ppm Se), or Se-supplemented (2.00 ppm Se) Torula yeast-based diets, to generate cytotoxic lymphocytes (CTL) and to destroy tumor cells. CTL were generated in vivo by intraperitoneal immunization with P815 cells and in vitro by allogeneic stimulation of cells from animals maintained on a normal diet in media supplemented with 1 x 10(-9) to 1 x 10(-6) M Se (as selenite). Lymphocytes from animals maintained on the Se-supplemented diet had a greater ability to destroy tumor cells than lymphocytes from animals maintained on the normal diet, whereas Se deficiency reduced the cytotoxicity. The effects on cytotoxicity were accompanied by parallel changes in the levels of lymphotoxin produced. The greatest enhancement of tumor cytodestruction occurred with supplementation of 1 x 10(-7) M Se, whereas with 1 x 10(-6) M there was inhibition of the cytotoxic responses. The stimulatory effect of Se occurred during the phase of CTL generation rather than during the lytic phase of cytotoxicity. These results indicated that Se supplementation enhances CTL generation and the ability of a host to destroy malignant cells, whereas Se deficiency has the opposite effect.  相似文献   

9.
With the aim to study if selenium (Se) deficiency affects the basal frequency and cardiac response to isoproterenol (ISO), mice were fed a Se-deficient diet (Se-) or the same diet supplemented with 0.2 ppm Se as sodium selenite (Se+) for 4 wk. Atria frequency, cyclic AMP (cAMP) accumulation, nitric oxide synthase (NOS) activity, and β-adrenoceptor-binding assay were then examined. Results showed that Se-mice have both a reduction in atria frequency as well as in cAMP content but higher NOS activity levels either at basal or after ISO stimulation. These differences were suppressed by feeding Se-mice with a Se-supplemented diet for 1 wk or by inhibition of inducible nitric oxide synthase (iNOS). Alterations observed after ISO stimulation in atria of Se-mice were not related to a β-adrenoceptor expression modification because specific radioligand-binding parameters in cardiac membranes from Se-mice and Se+ mice were similar. The reduced response on rate and cAMP in atria from Se-mice to direct adenylate cyclase (AC) stimulation by forskolin and the shifted upward levels present in 2-amino-4-methylpyridine-treated Se-mice is in agreement with a negative crosstalk between iNOS activity and AC activity in Se-mice.  相似文献   

10.
《Reproductive biology》2020,20(3):441-446
In the present report, we determined the impact of dietary selenium (Se) deficiency and supplementation on the expression of two ER-resident selenoproteins i.e., Selenok and Selenom in the ovaries of aging mice. The mRNA expression of Selenok and Selenom (RT-qPCR) was significantly higher in the ovaries of mice fed diets supplemented with inorganic (ISe-S: 0.33 mg Se/kg) and organic (OSe-S: 0.33 mg Se/kg) Se compared to those fed a Se-deficient (Se-D: 0.08 mg Se/kg) diet and both Se-adequate (ISe-A: 0.15 mg Se/kg and OSe-A: 0.15 mg Se/kg) diets. Similarly, the protein signals of SELENOK (immunofluorescence assay) were also significantly higher in the Se-supplemented groups compared to those fed Se-D and Se-adequate (ISe-A and OSe-A) diets. Meanwhile, the rate of in vitro-produced blastocysts developing from MII oocytes was also evaluated and it was revealed that this rate was significantly higher in the Se-supplemented mice compared to those fed a Se-D diet. Altogether, the dietary Se supplementation increased the expression of Selenok (also its protein expression) and Selenom in the ovaries of aging mice, potentially contributing to an improved developmental potential of in vitro-matured M II oocytes.  相似文献   

11.
Heat shock protein 70 (hsp70) family of proteins, which functions as molecular chaperones, has been associated with tolerance to stressors in avian species. Selenium (Se) is an essential trace mineral incorporated into the seleno-enzymes such as glutathione peroxidase (GSHpx). GSHpx reduces oxidized glutathione (GSSG) to reduced glutathione (GSH) in the GSH/GSSG antioxidant system and protects cells from oxidative damage. This study was conducted to examine if the relationship between dietary supplementation of selenium to turkey (Meleagris gallopavo) hens and the embryonic expression of hsp70 and GSHpx activity in heat stressed embryos. Livers of embryos developing in eggs from turkey hens fed diets with or without supplemental Se were analyzed for hsp70 concentration and GSHpx activity before and after recovery from a heating episode. Before heat stress, hsp70 concentrations were equivalent in each treatment, but GSHpx activity was maximized in the SE treatment group. After recovery from the heating episode, hsp70 concentrations were significantly higher (P<0.05) in the non-Se-supplemented groups, but in the Se-supplemented groups the hsp70 concentrations were not different from pre-stress concentrations. In the pre-stress Se-supplemented group, liver GSHpx activity was significantly higher than GSHpx activity in the non-Se-supplemented embryo livers, and in the livers from embryos recovering from heat stress, GSHpx activity in the non-Se-supplemented group was lower than the pre-stress activity and significantly lower than the GSHpx activity in liver from Se-supplemented embryos recovering from heat distress. Se supplementation to the dams resulted in a significant increase in their embryos and that condition would facilitate a decreased incidence of oxidative damage to cells. A more reduced redox status in embryos from Se-supplemented dams decreased the need for cellular protection attributed to stress induced hsp70 and presumably allows heat distressed embryos to resume normal growth and development than embryos from dams with inadequate selenium nutrition.  相似文献   

12.
13.
The effect of selenium deficiency on the product profile of arachidonic acid oxidation by enzymatic pathways in Holstein cows with experimentally-induced coliform mastitis was investigated. The animals were fed dairy rations containing 0.05 mg Se/kg dry matter, with the supplemented group receiving additional Se to increase the dietary concentration to approximately 0.35 mg Se/kg dry matter. Cows were inoculated intracisternally with 30 colony-forming-units of Escherichia coli at 14-16 weeks of lactation. Eicosanoids and bacteria numbers were recorded at various intervals of time for 60 h postinoculation. Milk from cows fed the Se-depleted diet had significantly higher (p less than 0.05) concentrations of TXB2 between 24 and 48 h and 6-keto-PGF1 alpha between 24 and 60 h postinoculation. Milk PGE2 concentration was significantly higher in the Se-deficient group at 24 h, whereas LTB4 was higher between 36 and 60 h postinoculation in the Se-deficient cows (p less than 0.05). Milk bacteria numbers were significantly higher between 16 and 24 h postinoculation in the Se-deficient group and three of the four cows in this group required euthanasia, whereas all four cows in the Se-supplemented group recovered without therapeutic intervention. These data indicate marked effects of dietary Se on milk eicosanoid concentrations in response to an E. coli infection. The changes in eicosanoid concentrations may be associated with the altered pathogenesis and outcome of mastitis in a Se-deficient state.  相似文献   

14.
In addition to hepatocytes, hepatitis C virus (HCV) infects immune cells, including macrophages. However, little is known concerning the impact of HCV infection on cellular functions of these immune effector cells. Lipopolysaccharide (LPS) activates IkappaB kinase (IKK) signalsome and NF-kappaB, which leads to the expression of cyclooxygenase-2 (COX-2), which catalyzes production of prostaglandins, potent effectors on inflammation and possibly hepatitis. Here, we examined whether expression of HCV core interferes with IKK signalsome activity and COX-2 expression in activated macrophages. In reporter assays, HCV core inhibited NF-kappaB activation in RAW 264.7 and MH-S murine macrophage cell lines treated with bacterial LPS. HCV core inhibited IKK signalsome and IKKbeta kinase activities induced by tumor necrosis factor alpha in HeLa cells and coexpressed IKKgamma in 293 cells, respectively. HCV core was coprecipitated with IKappaKappabeta and prevented nuclear translocation of IKKbeta. NF-kappaB activation by either LPS or overexpression of IKKbeta was sufficient to induce robust expression of COX-2, which was markedly suppressed by ectopic expression of HCV core. Together, these data indicate that HCV core suppresses IKK signalsome activity, which blunts COX-2 expression in macrophages. Additional studies are necessary to determine whether interrupted COX-2 expression by HCV core contributes to HCV pathogenesis.  相似文献   

15.
16.
Our previous studies have shown that selenium (Se) is protective against dimethylhydrazine (DMH)-induced preneoplastic colon cancer lesions, and protection against DNA damage has been hypothesized to be one mechanism for the anticancer effect of Se. The present study was designed to determine whether dietary selenite affects somatic mutation frequency in vivo. We used the Big Blue transgenic model to evaluate the in vivo mutation frequency of the cII gene in rats fed either a Se-deficient (0 μg Se/g diet) or Se-supplemented diet (0.2 or 2 μg Se/g diet; n = 3 rats/diet in experiment 1 and n = 5 rats/group in experiment 2) and injected with DMH (25 mg/kg body weight, i.p.). There were no significant differences in body weight between the Se-deficient and Se-supplemented (0.2 or 2 μg Se/g diet) rats, but the activities of liver glutathione peroxidase and thioredoxin reductase and concentration of liver Se were significantly lower (p < 0.0001) in Se-deficient rats compared to rats supplemented with Se. We found no effect of dietary Se on liver 8-hydroxy-2′-deoxyguanosine. Gene mutation frequency was significantly lower in liver (p < 0.001) than that of colon regardless of dietary Se. However, there were no differences in gene mutation frequency in DNA from colon mucosa or liver from rats fed the Se-deficient diet compared to those fed the Se-supplemented (0.2 or 2 μg Se/g diet) diet. Although gene mutations have been implicated in the etiology of cancer, our data suggest that decreasing gene mutation is not likely a key mechanism through which dietary selenite exerts its anticancer action against DMH-induced preneoplastic colon cancer lesions in a Big Blue transgenic rat model. The US Department of Agriculture, Agricultural Research Service, Northern Plains Area, is an equal opportunity/affirmative action employer and all agency services are available without discrimination. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the US Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable. This work was supported by the US Department of Agriculture and National Cancer Institute.  相似文献   

17.
18.
Lipopolysaccharide (LPS) was found to induce inflammatory responses in the airways and exerted as a potent stimulus for PG synthesis. This study was to determine the mechanisms of LPS-enhanced cyclooxygenase (COX)-2 expression associated with PGE(2) synthesis in tracheal smooth muscle cells (TSMCs). LPS markedly increased the expression of COX-2 and release of PGE(2) in a time- and concentration-dependent manner, whereas COX-1 remained unaltered. Both the expression of COX-2 and the generation of PGE(2) in response to LPS were attenuated by a tyrosine kinase inhibitor genistein, a phosphatidylcholine-phospholipase C inhibitor D609, a phosphatidylinositol-phospholipase C inhibitor U73122, protein kinase C inhibitors, GF109203X and staurosporine, removal of Ca(2+) by addition of BAPTA/AM plus EGTA, and phosphatidylinositol 3-kinase (PI3-K) inhibitors, LY294002 and wortmannin. Furthermore, LPS-induced NF-kappaB activation correlated with the degradation of IkappaB-alpha, COX-2 expression, and PGE(2) synthesis, was inhibited by transfection with dominant negative mutants of NIK and IKK-alpha, but not by IKK-beta. LPS-induced COX-2 expression and PGE(2) synthesis were completely inhibited by PD98059 (an inhibitor of MEK1/2) and SB203580 (an inhibitor of p38 MAPK inhibitor), but these two inhibitors had no effect on LPS-induced NF-kappaB activation, indicating that NF-kappaB is activated by LPS independently of activation of p42/p44 MAPK and p38 MAPK pathways in TSMCs. Taken together, these findings suggest that the increased expression of COX-2 correlates with the release of PGE(2) from LPS-challenged TSMCs, at least in part, independently mediated through MAPKs and NF-kappaB signalling pathways. LPS-mediated responses were modulated by PLC, Ca(2+), PKC, tyrosine kinase, and PI3-K in these cells.  相似文献   

19.
20.
Lim W  Jung J  Surh Y  Inoue H  Lee Y 《Life sciences》2007,80(22):2085-2092
The kidney cortical collecting duct is an important site for the maintenance of sodium balance. Previous studies have shown that, in renal medullary cells, hypertonic stress induces expression of cyclooxygenase-2 (COX-2) via NF-kappaB activation, but little is known about COX-2 expression in response to hypertonicity in the cortical collecting duct. Therefore, we examined the mechanism of hypertonic induction of COX-2 in M-1 cells derived from mouse cortical collecting duct. Induction of COX-2 protein was detected within 6 h of treatment with hypertonic sodium chloride. The treatment also increased COX-2 mRNA accumulation in a cycloheximide-independent manner, suggesting that ongoing protein synthesis is not required for COX-2 induction. Using reporter plasmids containing 0.2-, 0.3-, and 1.5-kb fragments of the COX-2 promoter, we found that hypertonic induction of COX-2 was due to an increase in promoter activity. The COX-2-inductive effect of hypertonicity was inhibited by SB203580, indicating that the effect is mediated by p38 MAPK. Since p38 MAPK can activate NF-kappaB, we made point mutations in the NF-kappaB binding site within the COX-2 promoter. The mutations did not block the induction of COX-2 promoter activity by hypertonic sodium chloride, and hypertonic sodium chloride failed to activate NF-kappaB binding site-driven reporter gene constructs. In contrast, hypertonic mannitol activated NF-kappaB, indicating that hypertonic mannitol and hypertonic sodium chloride activate COX-2 by different mechanisms. Thus, induction of COX-2 expression in M-1 cells by hypertonic sodium chloride does not involve activation of NF-kappaB. Furthermore, the signal transduction pathways that respond to hypertonic stress vary for different osmolytes in cortical collecting duct cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号