首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response characteristics of a new enzyme electrode for determining choline are reported. The enzyme electrode consists of a polyvinylferrocenium perchlorate coated Pt surface onto which the enzyme, choline oxidase, is attached. Choline oxidase catalyzes the oxidation of choline to betaine, producing H2O2. Current due to H2O2 oxidation catalyzed by polyvinylferrocenium centers was measured. The effects of choline concentration, the amount of enzyme immobilized and the operating pH and temperature on the response of the enzyme electrode were studied. The effects of interferents were also investigated. The response time was found to be 60–70 s and the upper limit of the linear working portion was found to be 1.2 mM choline concentration. The minimum substrate concentration that produced detectable current was 4.0×10−6 M choline concentration. The steady-state current of this enzyme electrode was reproducible within ±4.6% of relative error. The apparent Michaelis–Menten constant (KMapp) and the activation energy, Ea, of this immobilized enzyme system were found to be 2.32 mM and 38.91 kJ/mol, respectively.  相似文献   

2.
An amperometric enzyme electrode for the determination of glucose under anaerobic solution conditions was developed by immobilizing glucose oxidase and then by adsorbing ferrocene in polyvinylferrocenium matrix coated on a Pt electrode surface. The amperometric response due to the electrooxidation of ferrocene that the reduced flavin adenine dinucleotide centers of glucose oxidase was measured at a constant potential. The response characteristics of the enzyme electrode were investigated. The effects of the thickness of the polymeric film, the amount of the enzyme immobilized, the amount of the mediator, the glucose concentration, the applied potential, operating pH and temperature on the response of the enzyme electrode were studied. The response time and the optimum pH were found to be 30-40 s and pH 7.4 at 25 degrees C, respectively. The linear response was observed up to 5.0 mM glucose concentration that the produced detectable current was 0.0075 mM glucose concentration. The activation energy (E(a)) of immobilized enzyme reaction was calculated to be 41.3 kJ mol(-1) from the Arrhenius plot. The apparent Michaelis-Menten constant (K(Mapp)) was found to be 6.05 mM glucose according to the Lineweaver-Burk graph of the Michaelis-Menten equation under the optimum conditions. The interference signal due to the most common electrochemical interfering species was also evaluated.  相似文献   

3.
A new enzyme electrode for the determination of alcohols was developed by immobilizing alcohol oxidase in polvinylferrocenium matrix coated on a Pt electrode surface. The amperometric response due to the electrooxidation of enzymatically generated H(2)O(2) was measured at a constant potential of +0.70 V versus SCE. The effects of substrate, buffer and enzyme concentrations, pH and temperature on the response of the electrode were investigated. The optimum pH was found to be pH 8.0 at 30 degrees C. The steady-state current of this enzyme electrode was reproducible within +/-5.0% of the relative error. The sensitivity of the enzyme electrode decreased in the following order: methanol>ethanol>n-butanol>benzyl alcohol. The linear response was observed up to 3.7 mM for methanol, 3.0 mM for ethanol, 6.2 mM for n-butanol, and 5.2 mM for benzyl alcohol. The apparent Michaelis-Menten constant (K(Mapp)) value and the activation energy, E(a), of this immobilized enzyme system were found to be 5.78 mM and 38.07 kJ/mol for methanol, respectively.  相似文献   

4.
Organic peroxides, t-butyl hydroperoxide, 2-butanone peroxide, cumene hydroperoxide and t-butyl peracetate, were determined by an amperometric enzyme electrode. The enzyme electrode was prepared through electrostatic immobilization of horseradish peroxidase (HRP) in a polyvinylferrocenium (PVF) film. A PVF(+)ClO(4)(-) film was coated on a Pt foil at +0.70 V by electrooxidation of polyvinylferrocene in methylene chloride with 0.1 M tetrabutylammonium perchlorate (TBAP). The enzyme modified electrode PVF(+)HRP(-) was prepared by anion-exchange in a solution of HRP(-) in 0.05 M phosphate buffer at pH 8.5. FTIR spectroscopy was used to identify PVF, PVF(+)ClO(4)(-), and PVF(+)HRP(-). The immobilized amount of the enzyme in the film was determined by UV spectroscopy. The effects of the polymeric film thickness, bulk enzyme concentration used in the immobilization treatment and the temperature on the performance of enzyme electrode were investigated. The inhibitory effect of oxygen was also examined. Linearities, lower detection limits, active life times and sensitivities of the electrode were determined for each peroxide.  相似文献   

5.
The preparations and performances of the novel amperometric biosensors for glucose based on immobilized glucose oxidase (GOD) on modified Pt electrodes are described. Two types of modified electrodes for the enzyme immobilization were used in this study, polyvinylferrocene (PVF) coated Pt electrode and gold deposited PVF coated Pt electrode. A simple method for the immobilization of GOD enzyme on the modified electrodes was described. The enzyme electrodes developed in this study were called as PVF-GOD enzyme electrode and PVF-Au-GOD enzyme electrode, respectively. The amperometric responses of the enzyme electrodes were measured at constant potential, which was due to the electrooxidation of enzymatically produced H2O2. The electrocatalytic effects of the polymer, PVF, and the gold particles towards the electrooxidation of the enzymatically generated H2O2 offers sensitive and selective monitoring of glucose. The biosensor based on PVF-Au-GOD electrode has 6.6 times larger maximum current, 3.8 times higher sensitivity and 1.6 times larger linear working portion than those of the biosensor based on PVF-GOD electrode. The effects of the applied potential, the thickness of the polymeric film, the amount of the immobilized enzyme, pH, the amount of the deposited Au, temperature and substrate concentration on the responses of the biosensors were investigated. The optimum pH was found to be pH 7.4 at 25 degrees C. Finally the effects of interferents, stability of the biosensors and applicability to serum analysis of the biosensor were also investigated.  相似文献   

6.
Novel xanthine biosensors were successfully fabricated by immobilizing xanthine oxidase on polyvinylferrocenium perchlorate matrix (PVF+ClO4) and platinum electrodeposited polyvinylferrocenium perchlorate matrix. PVF+ClO4 film was coated on Pt electrode at +0.7 V vs. Ag/AgCl by electrooxidation of polyvinylferrocene (PVF). Platinum nanoparticles were deposited on PVF+ClO4 electrode by electrochemical deposition in 2.0 mM H2PtCl6 solution at −0.2 V. Xanthine oxidase was incorporated into the polymer matrix via ion exchange process by immersing modified Pt electrodes in the enzyme solution. The amperometric responses of the biosensors were measured via monitoring oxidation current of hydrogen peroxide at +0.5 V. Under the optimal conditions, the linear ranges of xanthine detection were determined as 1.73 × 10−3–1.74 mM for PVF+XO and 0.43 × 10−3–2.84 mM for PVF+XO/Pt. The detection limits of xanthine were 5.20 × 10−4 mM for PVF+XO and 1.30 × 10−4 mM for PVF+XO/Pt. Moreover, the effects of applied potential, electrodeposition potential, H2PtCl6 concentration, amount of electrodeposited Pt nanoparticles, thickness of polymeric film, temperature, immobilization time, xanthine and xanthine oxidase concentrations on the response currents of the biosensors were investigated in detail. The effects of interferents, the operational and storage stabilities of biosensors and the applicabilities to drug samples of the biosensors analysis were also evaluated.  相似文献   

7.
Amperometric glucose biosensors have been developed based on entrapment on platinum (Pt) electrode using cyclic voltammetry technique in glucose oxidase (GOD) and pyrrole containing p-toluenesulfonic acid (pTSA) or sodium p-toluenesulfonate (NapTS) as supporting electrolyte solutions. Both of electrolyte solutions were suitable media for the formation and deposition of polypyrrole-GOD (PPy-GOD) layers on Pt substrate. Pt/PPy-GOD electrodes brought about in different morphological properties as well as different electrochemical and biochemical response. The highest responses obtained in pTSA and NapTS electrolytes were observed at pH of 4.5 and 7.0 for Pt/PPy-GOD electrodes, respectively. While linearity was observed between 0.0-1.0 mM glucose substrate for both electrodes, I(max) value of Pt/PPy-GOD(NapTS) electrode was approximately twice as high as that of Pt/PPy-GOD(pTSA) electrode as 25.4 and 14.2 microA, respectively. Five commercial drinks were tested with enzyme electrodes and compared with results obtained spectrophotometrically using glucose kit. Results revealed that Pt/PPy-GOD(NapTS) electrode exhibited better biosensor response.  相似文献   

8.
A new amperometric biosensor, based on adsorption of glucose oxidase (GOD) at the platinum nanoparticle-modified carbon nanotube (CNT) electrode, is presented in this article. CNTs were grown directly on the graphite substrate. The resulting GOD/Pt/CNT electrode was covered by a thin layer of Nafion to avoid the loss of GOD in determination and to improve the anti-interferent ability. The morphologies and electrochemical performance of the CNT, Pt/CNT, and Nafion/GOD/Pt/CNT electrodes have been investigated by scanning electron microscopy, cyclic voltammetry, and amperometric methods. The excellent electrocatalytic activity and special three-dimensional structure of the enzyme electrode result in good characteristics such as a large determination range (0.1-13.5mM), a short response time (within 5s), a large current density (1.176 mA cm(-2)), and high sensitivity (91mA M(-1)cm(-2)) and stability (73.5% remains after 22 days). In addition, effects of pH value, applied potential, electrode construction, and electroactive interferents on the amperometric response of the sensor were investigated and discussed. The reproducibility and applicability to whole blood analysis of the enzyme electrode were also evaluated.  相似文献   

9.
Amperometric glucose biosensors have been developed based on entrapment on platinum (Pt) electrode using cyclic voltammetry technique in glucose oxidase (GOD) and pyrrole containing p-toluenesulfonic acid (pTSA) or sodium p-toluenesulfonate (NapTS) as supporting electrolyte solutions. Both of electrolyte solutions were suitable media for the formation and deposition of polypyrrole-GOD (PPy-GOD) layers on Pt substrate. Pt/PPy-GOD electrodes brought about in different morphological properties as well as different electrochemical and biochemical response. The highest responses obtained in pTSA and NapTS electrolytes were observed at pH of 4.5 and 7.0 for Pt/PPy-GOD electrodes, respectively. While linearity was observed between 0.0–1.0 mM glucose substrate for both electrodes, I max value of Pt/PPy-GODNapTS electrode was approximately twice as high as that of Pt/PPy-GODpTSA electrode as 25.4 and 14.2 μA, respectively. Five commercial drinks were tested with enzyme electrodes and compared with results obtained spectropho-tometrically using glucose kit. Results revealed that Pt/PPy-GODNapTS electrode exhibited better biosensor response.  相似文献   

10.
The electrochemical behavior of L-cysteine (CySH) on platinum (Pt)/carbon nanotube (CNT) electrode was investigated by cyclic voltammetry. CNTs used in this study were grown directly on graphite disk by chemical vapor deposition. Pt was electrochemically deposited on the activated CNT/graphite electrode by electroreduction of Pt(IV) complex ion on the surface of CNTs. Among graphite, CNT/graphite, and Pt/CNT electrodes, improved electrochemical behavior of CySH oxidation was found with Pt/CNT electrode. On the other hand, a sensitive CySH sensor was developed based on Pt/CNT/graphite electrode. A linear calibration curve can be observed in the range of 0.5 microM-0.1 mM. The detection limit of the Pt/CNT electrode is 0.3 microM (signal/nose=3). Effects of pH, scan rate, and interference of other oxidizable amino acids were also investigated and discussed. Additionally, the reproducibility, stability, and applicability of the Pt/CNT electrode were evaluated.  相似文献   

11.
Abstract—
  • 1 Choline acetyltransferase was purified from ox brain striate nuclei by an extraction step at pH 5, cation-exchange chromatography, fractional precipitation with ammonium sulphate, and chromatography on Sephadex G-200. The enzyme was obtained free of deacylases and cholinesterases, at specific activities of 01-0-3 μmol acetylcholine formed per min per mg protein.
  • 2 The enzyme was found to be a stable and relatively basic protein, with a molecular weight of 65,000.
  • 3 In the catalysed reactions, , k1, was about four times k2, and the equilibrium constant was approximately 40. For the forward reaction, the Michaelis constant for each substrate was independent of the concentration of the other (choline = 0-75 mM; acetyl-CoA = 10 μM), whereas in the back reaction one substrate increased the affinity for the other (acetylcholine = 0-75-5 MM; CoA = 25-150 μM).
  • 4 CoA inhibited acetylcholine synthesis by competing with acetyl-CoA (K1, = 16 μM). Acetylcholine slightly inhibited the forward reaction (e.g. 45 per cent in 200 mM) without competing with choline or acetyl-CoA. These data indicate an ordered reaction mechanism; acetyl-CoA probably always binds before choline.
  相似文献   

12.
Present study highlights the importance of RF sputtered NiO thin film deposited on platinum coated glass substrate (NiO/Pt/Ti/glass) as a potential matrix for the realization of highly sensitive and selective uric acid biosensor. Uricase has been immobilized successfully onto the surface of NiO matrix by physical adsorption technique. The prepared bioelectrode (uricase/NiO/Pt/Ti/glass) is utilized for sensing uric acid using the cyclic voltammetry and UV visible spectroscopy techniques. The bioelectrode is found to exhibit highly efficient sensing response characteristics with high sensitivity of 1278.48 μA/mM; good linearity of 0.05-1.0 mM, and very low Michaelis-Menten constant (k(m)) of 0.17 mM indicating high affinity of uricase towards the analyte. The enhanced response is due to the development of NiO matrix with good electron transport property and nanoporous morphology for effective loading of enzyme with preferred orientation.  相似文献   

13.
A novel acetylcholinesterase (AChE)/choline oxidase (ChOx) bienzyme amperometric acetylcholine biosensor based on gold nanoparticles (AuNPs) and multi-walled carbon nanotubes (MWCNTs) has been successfully developed by self-assembly process in combination of sol-gel technique. A thiolated aqueous silica sol containing MWCNTs and ChOx was first dropped on the surface of a cleaned Pt electrode, and then AuNPs were assembled with the thiolated sol-gel network. Finally, the alternate deposition of poly (diallyldimethylammonium chloride) (PDDA) and AChE was repeated to assemble different layers of PDDA-AChE on the electrode for optimizing AChE loading. Among the resulting biosensors, the biosensor based on two layers of PDDA-AChE multilayer films showed the best performance. It exhibited a wide linear range, high sensitivity and fast amperometric response, which were 0.005-0.4mM, 3.395 μA/mM, and within 15s, respectively. The biosensor showed long-term stability and acceptable reproducibility. More importantly, this study could provide a simple and effective multienzyme immobilization platform for meeting the demand of the effective immobilization enzyme on the electrode surface.  相似文献   

14.
Immobilization of tyrosinase and alcohol oxidase is achieved in the copolymer of pyrrole with vinyl alcohol with thiophene side groups (PVATh-co-PPy) which is a newly synthesized conducting polymer. PVATh-co-PPy/alcohol oxidase and PVATh-co-PPy/tyrosinase electrodes are constructed by the entrapment of enzyme in conducting copolymer matrix during electrochemical copolymerization. For tyrosinase and alcohol oxidase enzymes, catechol and ethanol are used as the substrates, respectively. Kinetic parameters: maximum reaction rates (V(max)) and Michaelis-Menten constants (K(m)) are obtained. V(max) and K(m) are found as 2.75 micromol/(minelectrode) and 18 mM, respectively, for PVATh-co-PPy/alcohol oxidase electrode and as 0.0091micromol/(minelectrode) and 40 mM, respectively, for PVATh-co-PPy/tyrosinase electrode. Maximum temperature and pH values are investigated and found that both electrodes have a wide working range with respect to both temperature and pH. Operational and storage stabilities show that although they have limited storage stabilities, the enzyme electrodes are useful with respect to operational stabilities.  相似文献   

15.
Abstract— The effects of monovalent and divalent anions on the choline acetyltransferase reaction have been determined at high (5.0 mM) and low (0.58 mM) choline. At 0.58 mM-choline, both monovalent and divalent anions activate the enzyme ±9 fold; however, at 5.0mM-choline, monovalent anions activate the enzyme ±25 fold, while divalent anions activate ±9 fold. Both monovalent and divalent anions show uncompetitive activation with respect to choline. When either dimethylaminoethanol, N -(2-hydroxyethyl)- N -methyl piperidinium iodide, or N -(2-hydroxyethyl)- N -propyl pyrrolidinium iodide was substituted for choline, activation by monovalent or divalent anions was only 2.5-4 fold. With AcCoA as substrate the ChA reaction can be increased ±20 fold by increased salts; however, with acetyl dephosphoCoA as substrate, the reaction is insensitive to the salt concentration. Similar salt effects on the ChA reaction, as measured in the direction of acetylcholine synthesis, have been demonstrated in the reverse reaction. In addition, inhibition of the forward reaction by acetylcholine has been measured as a function of sodium chloride concentration. Although the K1 for acetylcholine increases with increasing salt, this change in K 1, parallels the increase in the K m for choline. These results support the hypothesis that both monovalent and divalent anions activate choline acetyltransferase by the same singular mechanism; which is to increase the rate of dissociation of coenzyme A from the enzyme.  相似文献   

16.
A signal amplification system for electrochemiluminescence (ECL) of quantum dots (QDs) was developed by using electrochemically reduced graphene oxide (ERGO) to construct a nanobiosensing platform. Due to the structural defects of GO, the ECL emission of QDs coated on GO modified electrode was significantly quenched. After the electrochemical reduction of GO, the restoration of structural conjugation was observed with spectroscopic, morphologic and impedance techniques. Thus in the presence of dissolved O? as coreactant, the QDs/ERGO modified electrode showed ECL intensity increase by 4.2 and 178.9 times as compared with intrinsic QDs and QDs/GO modified electrodes due to the adsorption of dissolved O? on ERGO and the facilitated electron transfer. After choline oxidase (ChO) or ChO-acetylcholinesterase was further covalently cross-linked on the QDs/ERGO modified electrode, two ECL biosensors for choline and acetylcholine were fabricated, which showed the linear response ranges and detection limits of 10-210 μM and 8.8 μM for choline, and 10-250 μM and 4.7 μM for acetylcholine, respectively. This green and facile approach to prepare graphene-QDs system could be of potential applications in electronic device and bioanalysis.  相似文献   

17.
A novel amperometric biosensor, based on electrodeposition of platinum nanoparticles onto multi-walled carbon nanotube (MWNTs) and immobilizing enzyme with chitosan-SiO(2) sol-gel, is presented in this article. MWNTs were cast on the glass carbon (GC) substrate directly. An extra Nafion coating was used to eliminate common interferents such as acetaminophen and ascorbic acids. The morphologies and electrochemical performance of the modified electrodes have been investigated by scanning electron microscopy (SEM) and amperometric methods, respectively. The synergistic action of Pt and MWNTs and the biocompatibility of chitosan-SiO(2) sol-gel made the biosensor have excellent electrocatalytic activity and high stability. The resulting biosensor exhibits good response performance to glucose with a wide linear range from 1 microM to 23 mM and a low detection limit 1 microM. The biosensor also shows a short response time (within 5s), and a high sensitivity (58.9 microAm M(-1)cm(-2)). In addition, effects of pH value, applied potential, rotating rate, electrode construction and electroactive interferents on the amperometric response of the sensor were investigated and discussed in detail.  相似文献   

18.
Conductive polymer nanotubules of 1,2-diaminobenzene (1,2-DAB) were prepared using a porous polycarbonate membrane template, placed on a Pt foil and used to support the polymer, then, the electropolymerisation was performed by chronocoulometry. The obtained conductive polymer nanostructures were then placed on Pt electrode and used to support highly dispersed prussian blue (PB), which acts as the active component for H2O2 detection. The observed good stability of PB as catalyst of H2O2 was related to the presence of organic non-conventional conducting polymers in a composite nanostructured film. These nanostructured polymer/PB composite films were also characterised by scanning electron microscopy (SEM) and Raman spectroscopy. The non-conventional conducting polymer nanotubules/PB modified Pt electrodes were tested by cyclic voltammeter for stability at different pH values, then, by amperometry, for hydrogen peroxide, ascorbic acid, acetaminophen, uric acid and acetylcholine. Glucose oxidase (GOD), lactate oxidase (LOD), L-amino acid oxidase (L-AAOD), alcohol oxidase (AOD), glycerol-3-phosphate oxidase (GPO), lysine oxidase (LyOx), and choline oxidase (ChOx) were immobilised on PB layer supported on 1,2-diaminobenzene (1,2-DAB) nanotubules onto the Pt electrodes. Different strategies for enzyme immobilisation were performed and used. Analytical parameters such as reproducibility, interference rejection, response time, storage and operational stability of the sensors have been studied and optimised. Results provide a guide to design high sensitive, stable and interference-free biosensors. The glucose biosensors assembled with nanostructured poly(1,2-DAB) showed a detection limit of 5 x 10(-5) mol l(-1), a wide linearity range (5 x 10(-5) to 5 x 10(-3) mol l(-1)), a high selectivity, a stability of 3 months at 4 degrees C, and at least 4 weeks at room temperature. Similar analytical parameters and stability were also studied for L-(+)-lactic acid, L-leucine, ethanol, glycerol-3-phosphate, lysine, and choline biosensors.  相似文献   

19.
The electrochemical biosensors based on poly(o-phenylenediamine) (PoPD) and acetylcholinesterase (AChE) and choline oxidase (ChO) enzymes were fabricated on carbon fibre (CF) substrate. The electropolymerized PoPD was used to reduce the interfering substances. The electrode assembly was completed by depositing functionalized carbon nano tubes (FCNTs) and Nafion (Naf). Amperometric detection of acetylcholine (ACh) and choline (Ch) were realized at an applied potential of +750 mV vs Ag/AgCl (saturated KCl). At pH 7.4, the final assembly, Naf-FCNTs/AChE-ChO((10:1))/PoPD/CF(Elip), was observed to have high sensitivity towards Ch (6.3±0.3 μA mM(-1)) and ACh (5.8±0.3 μA mM(-1)), linear range for Ch (K(M)=0.52±0.03 mM) and ACh (K(M)=0.59±0.07 mM), and for Ch the highest ascorbic acid blocking capacity (97.2±2 1mM AA). It had a response time of <5s and with 0.045 μM limit of detection. Studies on different ratio (ACh/Ch) revealed that 10:1, gave best overall response.  相似文献   

20.
A new highly sensitive amperometric method for the detection of organophosphorus compounds has been developed. The method is based on a ferophthalocyanine chemically modified carbon paste electrode coupled with acetylcholinesterase and choline oxidase co-immobilized onto the surface of a dialysis membrane. The activity of cholinesterase is non-competitively inhibited in the presence of pesticides. The highest sensitivity to inhibitors was found for a membrane containing low enzyme loading and this was subsequently used for the construction of an amperometric biosensor for pesticides. Analyses were done using acetylcholine as substrate; choline produced by hydrolysis in the enzymatic layer was oxidized by choline-oxidase and subsequently H(2)O(2) produced was electrochemically detected at +0.35 V vs. Ag/AgCl. The decrease of substrate steady-state current caused by the addition of pesticide was used for evaluation. With this approach, up to 10(-10) M of paraoxon and carbofuran can be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号