首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.  相似文献   

9.
10.
11.
12.
13.
14.
The circadian clock system plays multiple roles in our bodies, and clock genes are expressed in various brain regions, including the lateral subventricular zone (SVZ) where neural stem/progenitor cells (NSPCs) persist and postnatal neurogenesis continues. However, the functions of clock genes in adult NSPCs are not well understood. Here, we first investigated the expression patterns of Clock and Bmal1 in the SVZ by immunohistochemistry and then verified how the expression levels of 17 clock and clock-related genes changed during differentiation of cultured adult NSPCs using quantitative RT-PCR. Finally, we used RNAi to observe the effects of Clock and Bmal1 on neuronal differentiation. Our results revealed that Clock and Bmal1 were expressed in the SVZ and double-stained with the neural progenitor marker Nestin and neural stem marker GFAP. In cultured adult NSPCs, the clock genes changed their expression patterns during differentiation, and interestingly, Bmal1 started endogenous oscillation. Moreover, gene silencing of Clock or Bmal1 by RNAi decreased the percentages of neuronal marker Map2-positive cells and expression levels of NeuroD1 mRNA. These findings suggest that clock genes are involved in the neuronal differentiation of adult NSPCs and may extend our understanding of various neurological/psychological disorders linked to adult neurogenesis and circadian rhythm.  相似文献   

15.
We investigated the role of Rsk proteins in the nerve growth factor (NGF) signaling pathway in PC12 cells. When rat Rsk1 or murine Rsk2 proteins were transiently expressed, NGF treatment (100 ng/ml for 3 days) caused three- and fivefold increases in Rsk1 and Rsk2 activities, respectively. Increased activation of both wild-type Rsk proteins could be achieved by coexpression of a constitutively active (CA) mitogen-activated protein kinase (MAPK) kinase, MEK1-DD, which is known to cause differentiation of PC12 cells even in the absence of NGF. Rsk1 and Rsk2 mutated in the PDK1-binding site were not activated by either NGF or MEK1-DD. Expression of constitutively active Rsk1 or Rsk2 in PC12 cells resulted in highly active proteins whose levels of activity did not change either with NGF treatment or after coexpression with MEK1-DD. Rsk2-CA expression had no detectable effect on the cells. However, expression of Rsk1-CA led to differentiation of PC12 cells even in the absence of NGF, as evidenced by neurite outgrowth. Differentiation was not observed with a nonactive Rsk1-CA that was mutated in the PDK1-binding site. Expression of Rsk1-CA did not lead to activation of the endogenous MAPK pathway, indicating that Rsk1 is sufficient to induce neurite outgrowth and is the only target of MAPK required for this effect. Collectively, our data demonstrate a key role for Rsk1 in the differentiation process of PC12 cells.  相似文献   

16.
17.
18.
19.
20.
Molecular and Cellular Biochemistry - There is a striking interaction of genes and environment in the etiology of type 2 diabetes mellitus (T2DM). While endocrine disrupting chemicals (EDCs) like...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号