首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of the nervous system relies on stringent regulation of genes that are crucial to this process. TrkA, the receptor for nerve growth factor (NGF), is tightly regulated during embryonic development and is essential for the survival and differentiation of neural crest-derived sensory and sympathetic neurons. We have previously identified a mouse TrkA enhancer and have characterized several cis regulatory elements that are important for appropriate TrkA expression in vivo. We now report the cloning of a novel gene encoding a Kruppel-like factor from a mouse dorsal root ganglion expression library. This Kruppel-like factor, named mKlf7, binds specifically to an Ikaros core binding element that is crucial for in vivo TrkA enhancer function. Using in situ hybridization, we demonstrate that mKlf7 is coexpressed with TrkA in sensory and sympathetic neurons during embryogenesis and in adulthood. These data are consistent with the idea that mKlf7 may directly regulate TrkA gene expression in the peripheral nervous system.  相似文献   

2.
3.
In this report we examine the biological and molecular basis of the control of sympathetic neuron differentiation and survival by NGF and neurotrophin-3 (NT-3). NT-3 is as efficient as NGF in mediating neuritogenesis and expression of growth-associated genes in NGF-dependent sympathetic neurons, but it is 20–40fold less efficient in supporting their survival. Both NT-3 and NGF induce similar sustained, long-term activation of TrkA, while NGF is 10-fold more efficient than NT-3 in mediating acute, short-term TrkA activity. At similar acute levels of TrkA activation, NT-3 still mediates neuronal survival two- to threefold less well than NGF. However, a mutant NT-3 that activates TrkC, but not TrkA, is unable to support sympathetic neuron survival or neuritogenesis, indicating that NT3–mediated TrkA activation is necessary for both of these responses. On the basis of these data, we suggest that NGF and NT-3 differentially regulate the TrkA receptor both with regard to activation time course and downstream targets, leading to selective regulation of neuritogenesis and survival. Such differential responsiveness to two ligands acting through the same Trk receptor has important implications for neurotrophin function throughout the nervous system.  相似文献   

4.
5.
6.
Kuruvilla R  Zweifel LS  Glebova NO  Lonze BE  Valdez G  Ye H  Ginty DD 《Cell》2004,118(2):243-255
A fundamental question in developmental biology is how a limited number of growth factors and their cognate receptors coordinate the formation of tissues and organs endowed with enormous morphological complexity. We report that the related neurotrophins NGF and NT-3, acting through a common receptor, TrkA, are required for sequential stages of sympathetic axon growth and, thus, innervation of target fields. Yet, while NGF supports TrkA internalization and retrograde signaling from distal axons to cell bodies to promote neuronal survival, NT-3 cannot. Interestingly, final target-derived NGF promotes expression of the p75 neurotrophin receptor, in turn causing a reduction in the sensitivity of axons to intermediate target-derived NT-3. We propose that a hierarchical neurotrophin signaling cascade coordinates sequential stages of sympathetic axon growth, innervation of targets, and survival in a manner dependent on the differential control of TrkA internalization, trafficking, and retrograde axonal signaling.  相似文献   

7.
8.
Colloquium 10: 3     
Previous work has shown that neurotrophins bind to and activate Trk receptors on distal axons, and that neurotrophin‐Trk complexes are internalized and retrogradely transported to cell bodies. Whether retrograde transport of neurotrophins and retrograde neurotrophin‐Trk signalling are necessary for survival remains unclear, and recently published findings are controversial. We are using compartmentalized cultures of sympathetic neurons to address the mechanism of retrograde NGF signalling and survival. We performed survival experiments using either the Trk kinase inhibitor K252a to inhibit TrkA activity in different cellular compartments, or a dominant‐negative form of dynamin, K44A dynamin, to block internalization of NGF‐TrkA complexes. We found that sympathetic neurons supported by NGF acting on distal axons undergo apoptosis when TrkA activity in either cell bodies or distal axons is inhibited by K252a, or when internalization is blocked by K44A dynamin. Results of experiments employing three‐compartment chambers indicate that TrkA signalling is required within cell bodies and distal axons, but not in proximal axons, for retrograde support of survival. Likewise, TrkA activity within distal axons, but not in proximal axons, is required for retrograde transport of [125I] NGF. Finally, peptide‐mediated delivery of affinity‐purified anti‐NGF into cell bodies results in apoptosis of neurons. Taken together, our results support a model in which NGF internalization and retrograde transport and retrograde TrkA signalling are necessary for survival of sympathetic neurons. This work is supported by the NIH and HHMI.  相似文献   

9.
Developmental sympathetic neuron death is determined by functional interactions between the TrkA/NGF receptor and the p75 neurotrophin receptor (p75NTR). A key question is whether p75NTR promotes apoptosis by directly inhibiting or modulating TrkA activity, or by stimulating cell death independently of TrkA. Here we provide evidence for the latter model. Specifically, experiments presented here demonstrate that the presence or absence of p75NTR does not alter Trk activity or NGF- and NT-3-mediated downstream survival signaling in primary neurons. Crosses of p75NTR-/- and TrkA-/- mice indicate that the coincident absence of p75NTR substantially rescues TrkA-/- sympathetic neurons from developmental death in vivo. Thus, p75NTR induces death regardless of the presence or absence of TrkA expression. These data therefore support a model where developing sympathetic neurons are "destined to die" by an ongoing p75NTR-mediated apoptotic signal, and one of the major ways that TrkA promotes neuronal survival is by silencing this ongoing death signal.  相似文献   

10.
Neuroblastoma (NB) is the most frequent solid extracranial tumor in children. Its clinical prognosis correlates with the expression of members of the Trk neurotrophin receptor family, which includes TrkA and TrkB. TrkA expression is associated with favorable prognosis, whereas TrkB expression is associated with poor prognosis. Here we show that TrkA expression induces the apoptosis of NB cells and does so by modulating the levels or activities of a number of proteins involved in regulating cell survival and apoptosis, including p53, Bcl-2, and caspase-3. TrkA increased the expression of p53 target proteins and failed to induce apoptosis in cells where p53 was inactivated by mutation or via expression of dominant inhibitory p53 or E1B55K, indicating that TrkA mediates apoptosis, at least in part, through p53. Treatment with a caspase inhibitor or overexpression of Bcl-X(L) also prevented TrkA from inducing apoptosis. In contrast, elevated expression of TrkA in non-transformed sympathetic neurons resulted in the suppression of p53 levels and enhanced survival. These results identify apoptosis as a novel biological response of TrkA in NB cells and imply that TrkA is a good prognosis marker for NB due in part to its ability to mediate apoptosis when expressed at sufficient levels.  相似文献   

11.
12.
The neurotrophins NGF and NT3 collaborate to support development of sympathetic neurons. Although both promote axonal extension via the TrkA receptor, only NGF activates retrograde transport of TrkA endosomes to support neuronal survival. Here, we report that actin depolymerization is essential for initiation of NGF/TrkA endosome trafficking and that?a Rac1-cofilin signaling module associated with TrkA early endosomes supports their maturation to retrograde transport-competent endosomes. These actin-regulatory endosomal components are absent from NT3/TrkA endosomes, explaining the failure of NT3 to support retrograde TrkA transport and survival. The inability of NT3 to activate Rac1-GTP-cofilin signaling is likely due to the labile nature of NT3/TrkA complexes within the acidic environment of TrkA early endosomes. Thus, TrkA endosomes associate with actin-modulatory proteins to promote F-actin disassembly, enabling their maturation into transport-competent signaling endosomes. Differential control of this process explains how NGF but not NT3 supports retrograde survival of sympathetic neurons.  相似文献   

13.
The human nerve growth factor receptor (TrkA) contains four potential N-glycosylation sites that are highly conserved within the Trk family of neurotrophin receptors, and nine additional sites that are less well conserved. Using a microscale deglycosylation assay, we show here that both conserved and variable N-glycosylation sites are used during maturation of TrkA. Glycosylation at these sites serves two distinct functions. First, glycosylation is necessary to prevent ligand-independent activation of TrkA. Unglycosylated TrkA core protein is phosphorylated even in the absence of ligand stimulation and displays constitutive kinase activity as well as constitutive interaction with the signaling molecules Shc and PLC-gamma. Second, glycosylation is required to localize TrkA to the cell surface, where it can trigger the Ras/Raf/MAP kinase cascade. Using confocal microscopy, we show that unglycosylated active Trk receptors are trapped intracellularly. Furthermore, the unglycosylated active TrkA receptors are unable to activate kinases in the Ras-MAP kinase pathway, MEK and Erk. Consistent with these biochemical observations, unglycosylated TrkA core protein does not promote neuronal differentiation in Trk PC12 cells even at high levels of constitutive catalytic activity.  相似文献   

14.
The neurotrophin receptor TrkA plays critical roles in the nervous system by recruiting signaling molecules that activate pathways required for the growth and survival of neurons. Here, we report APPL1 as a TrkA-associated protein. APPL1 and TrkA co-immunoprecipitated in sympathetic neurons. We have identified two routes through which this association can occur. APPL1 was isolated as a binding partner for the TrkA-interacting protein GIPC1 from rat brain lysate by mass spectrometry. The PDZ domain of GIPC1 directly engaged the C-terminal sequence of APPL1. This interaction provides a means through which APPL1 may be recruited to TrkA. In addition, the APPL1 PTB domain bound to TrkA, indicating that APPL1 may associate with TrkA independently of GIPC1. Isolation of endosomal fractions by high-resolution centrifugation determined that APPL1, GIPC1, and phosphorylated TrkA are enriched in the same fractions. Reduction of APPL1 or GIPC1 protein levels suppressed nerve growth factor (NGF)-dependent MEK, extracellular signal-regulated kinase, and Akt activation and neurite outgrowth in PC12 cells. Together, these results indicate that GIPC1 and APPL1 play a role in TrkA function and suggest that a population of endosomes bearing a complex of APPL1, GIPC1, and activated TrkA may transmit NGF signals.  相似文献   

15.
Nerve growth factor (NGF) mediates the survival and differentiation of neurons by stimulating the tyrosine kinase activity of the TrkA/NGF receptor. Here, we identify SHP-1 as a phosphotyrosine phosphatase that negatively regulates TrkA. SHP-1 formed complexes with TrkA at Y490, and dephosphorylated it at Y674/675. Expression of SHP-1 in sympathetic neurons induced apoptosis and TrkA dephosphorylation. Conversely, inhibition of endogenous SHP-1 with a dominant-inhibitory mutant stimulated basal tyrosine phosphorylation of TrkA, thereby promoting NGF-independent survival and causing sustained and elevated TrkA activation in the presence of NGF. Mice lacking SHP-1 had increased numbers of sympathetic neurons during the period of naturally occurring neuronal cell death, and when cultured, these neurons survived better than wild-type neurons in the absence of NGF. These data indicate that SHP-1 can function as a TrkA phosphatase, controlling both the basal and NGF-regulated level of TrkA activity in neurons, and suggest that SHP-1 regulates neuron number during the developmental cell death period by directly regulating TrkA activity.  相似文献   

16.
Sympathetic arborizations act as the essential efferent signals in regulating the metabolism of peripheral organs including white adipose tissues (WAT). However, whether these local neural structures would be of plastic nature, and how such plasticity might participate in specific metabolic events of WAT, remains largely uncharacterized. In this study, we exploit the new volume fluorescence-imaging technique to observe the significant, and also reversible, plasticity of intra-adipose sympathetic arborizations in mouse inguinal WAT in response to cold challenge. We demonstrate that this sympathetic plasticity depends on the cold-elicited signal of nerve growth factor (NGF) and TrkA receptor. Blockage of NGF or TrkA signaling suppresses intraadipose sympathetic plasticity, and moreover, the coldinduced beiging process of WAT. Furthermore, we show that NGF expression in WAT depends on the catecholamine signal in cold challenge. We therefore reveal the key physiological relevance, together with the regulatory mechanism, of intra-adipose sympathetic plasticity in the WAT metabolism.  相似文献   

17.
Suppressor of cytokine signaling‐2 (SOCS2) is a regulator of intracellular responses to growth factors and cytokines. Cultured dorsal root ganglia neurons from neonatal mice with increased or decreased SOCS2 expression were examined for altered responsiveness to nerve growth factor (NGF). In the presence of NGF, SOCS2 over‐expression increased neurite length and complexity, whereas loss of SOCS2 reduced neurite outgrowth. Neither loss nor gain of SOCS2 expression altered the relative survival of these cells, suggesting that SOCS2 can discriminate between the differentiation and survival responses to NGF. Interaction studies in 293T cells revealed that SOCS2 immunoprecipitates with TrkA and a juxtamembrane motif of TrkA was required for this interaction. SOCS2 also immunoprecipitated with endogenous TrkA in PC12 Tet‐On cells. Over‐expression of SOCS2 in PC12 Tet‐On cells increased total and surface TrkA expression. In contrast, dorsal root ganglion neurons which over‐expressed SOCS2 did not exhibit significant changes in total levels but an increase in surface TrkA was noted. SOCS2‐induced neurite outgrowth in PC12 Tet‐On cells correlated with increased and prolonged activation of pAKT and pErk1/2 and required an intact SOCS2 SH2 domain and SOCS box domain. This study highlights a novel role for SOCS2 in the regulation of TrkA signaling and biology.

  相似文献   


18.
Neuroblastoma (NB), the most common extracranial tumor during childhood arises from the embryonic sympathetic nervous system. Remarkably, NB can spontaneously regress, even after metastasis, leading to complete remission. Subpopulations of neuroblastic (N-type) and nonneuronal cells coexist in NB. Expression of the high-affinity nerve growth factor (NGF) TrkA receptor in NB is correlated with good prognosis, while MYCN amplification is associated with advanced stages of disease. N-type cells undergo differentiation when treated with different compounds, such as retinoids, phorbol esters, growth and neurotrophic NGF and neuropeptides, especially vasoactive intestinal peptide (VIP). These substances stabilize proliferation, leading to a more mature neuronal phenotype, neurite outgrowth and induction of expression of sympathetic neuronal markers. Therefore, receptors for these substances and their associated signalling pathways, appear like promising targets for the development of novel NB therapeutics. The aim of the present review is to summarize the quite considerable array of data, concerning production of VIP and related peptides, expression of their receptors in NB and the key regulation exerted by the VIP-receptor system in the control of NB cell behaviour.  相似文献   

19.
20.
Neurotrophins promote multiple actions on neuronal cells including cell survival and differentiation. The best-studied neurotrophin, nerve growth factor (NGF), is a major survival factor in sympathetic and sensory neurons and promotes differentiation in a well-studied model system, PC12 cells. To mediate these actions, NGF binds to the TrkA receptor to trigger intracellular signaling cascades. Two kinases whose activities mediate these processes include the mitogen-activated protein (MAP) kinase (or extracellular signal-regulated kinase [ERK]) and phosphoinositide 3-kinase (PI3-K). To examine potential interactions between the ERK and PI3-K pathways, we studied the requirement of PI3-K for NGF activation of the ERK signaling cascade in dorsal root ganglion cells and PC12 cells. We show that PI3-K is required for TrkA internalization and participates in NGF signaling to ERKs via distinct actions on the small G proteins Ras and Rap1. In PC12 cells, NGF activates Ras and Rap1 to elicit the rapid and sustained activation of ERKs respectively. We show here that Rap1 activation requires both TrkA internalization and PI3-K, whereas Ras activation requires neither TrkA internalization nor PI3-K. Both inhibitors of PI3-K and inhibitors of endocytosis prevent GTP loading of Rap1 and block sustained ERK activation by NGF. PI3-K and endocytosis may also regulate ERK signaling at a second site downstream of Ras, since both rapid ERK activation and the Ras-dependent activation of the MAP kinase kinase kinase B-Raf are blocked by inhibition of either PI3-K or endocytosis. The results of this study suggest that PI3-K may be required for the signals initiated by TrkA internalization and demonstrate that specific endocytic events may distinguish ERK signaling via Rap1 and Ras.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号