首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arginine is a common substrate for both inducible nitric oxide synthase (iNOS) and arginase. The competition between iNOS and arginase for arginine contributes to the outcome of several parasitic and bacterial infections. Salmonella infection in macrophage cell line RAW264.7 induces iNOS. Because the availability of l-arginine is a major determinant for nitric oxide (NO) synthesis, we hypothesize that in the Salmonella infected macrophages NO production may be regulated by arginase. Here we report for the first time that Salmonella up-regulates arginase II but not arginase I isoform in RAW264.7 macrophages. Blocking arginase increases the substrate l-arginine availability to iNOS for production of more nitric oxide and perhaps peroxynitrite molecules in the infected cells allowing better killing of virulent Salmonella in a NO dependent manner. RAW264.7 macrophages treated with iNOS inhibitor Aminoguanidine reverts the attenuation in arginase-blocked condition. Further, the NO block created by Salmonella was removed by increasing concentration of l-arginine. The whole-mice system arginase I, although constitutive, is much more abundant than the inducible arginase II isoform. Inhibition of arginase activity in mice during the course of Salmonella infection reduces the bacterial burden and delays the disease outcome in a NO dependent manner.  相似文献   

2.
3.
To examine the potential and strategies of the facultative intracellular pathogen Salmonella typhimurium to increase its fitness in host cells, we applied a selection that enriches for mutants with increased bacterial growth yields in murine J774-A.1 macrophage-like cells. The selection, which was based on intracellular growth competition, rapidly yielded isolates that out-competed the wild-type strain during intracellular growth. J774-A.1 cells responded to challenge with S. typhimurium by mounting an inducible nitric oxide synthase (iNOS) mRNA and protein expression and a concomitant nitric oxide (NO) production. Inhibition of NO production with the use of the competitive inhibitor N-monomethyl-L-arginine (NMMA) resulted in a 20-fold increase in bacterial growth yield, suggesting that the NO response prevented bacterial intracellular growth. In accordance with this observation, five out of the nine growth advantage mutants isolated inhibited production of NO from J774-A.1 cells, despite an induction of iNOS mRNA and iNOS protein. Accompanying bacterial phenotypes included alterations in lipopolysaccharide structure and in the profiles of proteins secreted by invasion-competent bacteria. The results indicate that S. typhimurium has the ability to mutate in several different ways to increase its host fitness and that inhibition of iNOS activity may be a major adaptation.  相似文献   

4.
Smallwood HS  Shi L  Squier TC 《Biochemistry》2006,45(32):9717-9726
The rapid activation of macrophages in response to bacterial antigens is central to the innate immune system that permits the recognition and killing of pathogens to limit infection. To understand regulatory mechanisms underlying macrophage activation, we have investigated changes in the abundance of calmodulin (CaM) and iNOS in response to the bacterial cell wall component lipopolysaccharide (LPS) using RAW 264.7 macrophages. Critical to these measurements was the ability to differentiate free iNOS from the CaM-bound (active) form of iNOS associated with nitric oxide generation. We observe a rapid 2-fold increase in CaM abundance during the first 30 min that is blocked by inhibition of either NFkappaB nuclear translocation or protein synthesis. A similar 2-fold increase in the abundance of the complex between CaM and iNOS is observed with the same time dependence. In contrast, there are no detectable increases in the CaM-free (i.e., inactive) form of iNOS within the first 2 h; it remains at a very low abundance during the initial phase of macrophage activation. Increasing cellular CaM levels in stably transfected macrophages results in a corresponding increase in the abundance of the CaM/iNOS complex that promotes effective bacterial killing following infection by Salmonella typhimurium. Thus, LPS-dependent increases in CaM abundance function in the stabilization and activation of iNOS on the rapid time scale associated with macrophage activation and bacterial killing. These results explain how CaM and iNOS coordinately function to form a stable complex that is part of a rapid host response that functions within the first 30 min following bacterial infection to upregulate the innate immune system involving macrophage activation.  相似文献   

5.
Aminoguanidine (AG), a nitric oxide synthase (NOS) inhibitor, has been widely used to study the role of inducible NOS (iNOS) in host defense against infections caused by various pathogens including Salmonella typhimurium. iNOS has been reported to play an important role in host defense against S. typhimurium infection both in vitro and in vivo. In this report we show those AG treatment lead to weight loss in both wild-type and iNOS knockout mice, and rendered them more susceptible to Salmonella infection. These results suggest that AG may have side effects other than the inhibition of iNOS, and that data obtained from studies using AG should be interpreted with caution.  相似文献   

6.
Salmonella infections are a serious public health problem in developing countries and represent a constant concern for the food industry. The severity and the outcome of a systemic Salmonella infection depends on the "virulence" of the bacteria, on the infectious dose as well as on the genetic makeup and immunological status of the host. The control of bacterial growth in the reticuloendothelial system (RES) in the early phases of a Salmonella infection relies on the NADPH oxidase-dependent anti-microbial functions of resident phagocytes and is controlled by the innate resistance gene Nramp1. This early phase is followed by the suppression of Salmonella growth in the RES due to the onset of an adaptive host response. This response relies on the concerted action of a number of cytokines (TNFalpha, IFNgamma, IL12, IL18, and IL15), on the recruitment of inflammatory phagocytes in the tissues and on the activation of the recruited cells. Phagocytes control bacterial growth in this phase of the infection by producing reactive nitrogen intermediates (RNI) generated via the inducible nitric oxide synthase (iNOS). Clearance of the bacteria from the RES at a later stage of the infection requires the CD28-dependent activation of CD4+ TCR-alphabeta T-cells and is controlled by MHC class II genes. Resistance to re-infection with virulent Salmonella micro-organisms requires the presence of Th1 type immunological memory and anti-Salmonella antibodies. Thus, the development of protective immunity to Salmonella infections relies on the cross-talk between the humoral and cellular branches of the immune system.  相似文献   

7.
O-antigen-proficient and defined O-antigen-deficient mutants of Salmonella enterica serovar Typhimurium were compared for intracellular replication and induction of nitric oxide (NO) expression in the murine macrophage-like cell line J774-A.1. While O-antigen-proficient bacteria replicated and provoked induction of host cell NO synthesis to expected levels, DeltawaaK, DeltawaaL and DeltawaaKL mutants displayed increased growth yields and induction of significantly lower levels of macrophage NO production. The downregulation of NO production did not involve suppression of inducible nitric oxide synthase (iNOS) expression, yet it depended on bacterial protein synthesis during infection of J774-A.1 cells. In contrast, when inhibitor substances were used to block iNOS activity, the growth yield of the wild type significantly exceeded that of the DeltawaaL mutant bacteria. Inactivation of the Salmonella pathogenicity island 1 (SPI1)-associated bacterial type III secretion system did not affect intracellular replication in the wild type or the DeltawaaL background. However, inactivation of the SPI2-associated type III secretion strongly abrogated bacterial intracellular replication, and the DeltawaaLDeltassaV double mutant lost the ability to suppress NO expression. The results imply that a lack of O-antigen may increase bacterial fitness in J774-A.1 cells through suppression of iNOS activity, and that the O-antigen may protect against NO-independent restriction of bacterial intracellular replication.  相似文献   

8.
9.
10.
The initial binding of phage P22 to its host, Salmonella typhimurium, is dependent in a linear fashion on the number of tail parts per phage head. (The normal head has six.) There is also a later step which depends on tail parts. This step must occur some time after hydrolysis of the O antigen has been initiated and before ejection of phage DNA from the head is complete. This step causes PFU to depend on approximately the third power of the number of tail parts per head.  相似文献   

11.
It is well known that CR (caloric restriction) reduces oxidative damage to proteins, lipids and DNA, although the underlying mechanism is unclear. However, information concerning the effect of CR on the host response to infection is sparse. In this study, 6-month-old mice that were fed AL (ad libitum) or with a CR diet were infected with Salmonella serovar Typhimurium. EPR (electron paramagnetic resonance; also known as ESR (electron spin resonance)) was used to identify FRs (free radicals). These results were subsequently correlated with SOD (superoxide dismutase) catalytic activity, iNOS [inducible NOS (nitric oxide synthase) or NOSII] expression and NO (nitric oxide) content. EPR analysis of liver samples demonstrated that there was a higher quantity of FRs and iron-nitrosyl complex in infected mice provided with a CR diet as compared with those on an AL diet, indicating that CR was beneficial by increasing the host response to Salmonella Typhimurium. Furthermore, in infected mice on the CR diet, NOSII expression was higher, NO content was greater and spleen colonization was lower, compared with mice on the AL diet. No changes in SOD activity were detected, indicating that the NO produced participated more in the formation of iron-nitrosyl complexes than peroxynitrite. These results suggest that CR exerts a protective effect against Salmonella Typhimurium infection by increasing NO production.  相似文献   

12.
The intracellular pathogen Salmonella replicates in infected host cells within a specialized vacuole referred to as the Salmonella-containing vacuole (SCV). Effector molecules encoded by the Salmonella pathogenicity island 2 (SPI-2) type III secretion system (TTSS) are essential for Salmonella to survive in the intracellular environment. It was previously shown that SPI-2 allows Salmonella to inhibit the recruitment of NADPH phagocyte oxidase-containing vesicles to SCVs. New research has now revealed that SPI-2 effectors also interfere with the colocalization of inducible nitric oxide synthase (iNOS) to SCVs, thus protecting the pathogen from the antimicrobial actions of reactive nitrogen species.  相似文献   

13.
Production of nitric oxide (NO) can be stimulated by inflammatory cytokines and bacterial lipopolysaccharide (LPS) in mammalian cells via an inducible nitric oxide synthase (iNOS). Conversely, the transforming growth factor-βs (TGF-βs) suppress NO production by reducing iNOS expression. Production of NO leads to disparate consequences, some beneficial and some damaging to the host, depending on the cell and context in which iNOS is induced. The TGF-βs counter these NO-mediated processes in macrophages, cardiac myocytes, smooth muscle cells, bone marrow cells, and retinal pigment epithelial cells. Autocrine or paracrine production of TGF-β may thus serve as a physiological counterbalance for iNOS expression, a mechanism which may be subverted by pathogens and tumors for their own survival. A greater understanding of the mechanisms and consequences of NO and TGF-β production may lead to effective therapeutic strategies in various diseases.  相似文献   

14.
Salmonella enterica uses a type III secretion system encoded by SPI-2 to target specific virulence factors into the host cytosol of macrophages to inhibit the phagosomal-lysosomal maturation pathway. This ensures survival of Salmonella inside its intracellular niche, the Salmonella -containing vacuole (SCV). One such virulence factor is SpiC, which was previously shown to interfere with intracellular vesicular trafficking. In this study we have used a yeast two-hybrid assay to identify a NIPSNAP homologue as host cell target for SpiC that we have termed TassC. In vitro and in vivo co-purification of SpiC and TassC confirm the specificity of this interaction. Suppression of TassC production compensates a SpiC production deficit and allows spiC Salmonella to survive within macrophages at levels comparable to wild-type Salmonella . We hypothesize that TassC is a host cell factor that determines vesicular trafficking in macrophages and is inactivated by Salmonella SpiC.  相似文献   

15.
Helicobacter pylori infection of the stomach elicits a vigorous but ineffective host immune and inflammatory response, resulting in persistence of the bacterium for the life of the host. We have reported that in macrophages, H. pylori up-regulates inducible NO synthase (iNOS) and antimicrobial NO production, but in parallel there is induction of arginase II, generating ornithine, and of ornithine decarboxylase (ODC), generating polyamines. Spermine, in particular, has been shown to restrain immune response in activated macrophages by inhibiting proinflammatory gene expression. We hypothesized that spermine could prevent the antimicrobial effects of NO by inhibiting iNOS in macrophages activated by H. pylori. Spermine did not affect the up-regulation of iNOS mRNA levels but in a concentration-dependent manner significantly attenuated iNOS protein levels and NO production. Reduction in iNOS protein was due to inhibition of iNOS translation and not due to iNOS degradation. ODC knockdown with small interfering (si) RNA resulted in increased H. pylori-stimulated iNOS protein expression and NO production without altering iNOS mRNA levels. When macrophages were cocultured with H. pylori, killing of bacteria was enhanced by transfection of ODC siRNA and prevented by addition of spermine. These results identify a mechanism of immune dysregulation induced by H. pylori in which stimulated spermine synthesis by the arginase-ODC pathway inhibits iNOS translation and NO production, leading to persistence of the bacterium and risk for peptic ulcer disease and gastric cancer.  相似文献   

16.
17.
18.
Proinflammatory cytokines produced by immune cells destroy pancreatic beta cells in type 1 diabetes. The aim of this study was to investigate the cytokine network and its effects in insulin-secreting cells. INS1E cells were exposed to different combinations of proinflammatory cytokines. Cytokine toxicity was estimated by MTT assay and caspase activation measurements. The NFκB-iNOS pathway was analyzed by a SEAP reporter gene assay, Western-blotting and nitrite measurements. Gene expression analyses of ER stress markers, Chop and Bip, were performed by real-time RT-PCR. Cytokines tested in this study, namely IL-1β, TNFα and IFNγ, had deleterious effects on beta cell viability. The most potent toxicity exhibited IL-1β and its combinations with other cytokines. The toxic effects of IL-1β towards cell viability, caspase activation and iNOS activity were dependent on nitric oxide and abolished by an iNOS blocker. IL-1β was the strongest inducer of the NFκB activation. An iNOS blocker inhibited IL-1β-mediated NFκB activation in the first, initial phase of cytokine action, but did not affect significantly NFκB activation after prolonged incubation. Interestingly iNOS protein expression was induced predominantly by IL-1β and decreased in the presence of an iNOS blocker in the case of a short time exposure. The changes in the expression of ER stress markers were also almost exclusively dependent on the IL-1β presence and counteracted by iNOS blockade. Thus cytokine-induced beta cell death is primarily IL-1β mediated with a NO-independent enhancement by TNFα and IFNγ. The deleterious effects on cell viability and function are crucially dependent on IL-1β-induced nitric oxide formation.  相似文献   

19.
20.
The effectiveness of attenuated Salmonella in inhibiting tumor growth has been demonstrated in many therapeutic models, but the precise mechanisms remain incompletely understood. In this study, we show that the anti-tumor capacity of Salmonella depends on a functional MyD88-TLR pathway and is independent of adaptive immune responses. Since myeloid suppressor cells play a critical role in tumor growth, we investigated the consequences of Salmonella treatment on myeloid cell recruitment, phenotypic characteristics, and functional activation in spleen and tumor tissue of B16.F1 melanoma-bearing mice. Salmonella treatment led to increased accumulation of splenic and intratumoral CD11b+Gr-1+ myeloid cells, exhibiting significantly increased expression of various activation markers such as MHC class II, costimulatory molecules, and Sca-1/Ly6A proteins. Gene expression analysis showed that Salmonella treatment induced expression of iNOS, arginase-1 (ARG1), and IFN-γ in the spleen, but down-regulated IL-4 and TGF-β. Within the tumor, expression of iNOS, IFN-γ, and S100A9 was markedly increased, but ARG1, IL-4, TGF-β, and VEGF were inhibited. Functionally, splenic CD11b+ cells maintained their suppressive capacity following Salmonella treatment, but intratumoral myeloid cells had significantly reduced suppressive capacity. Our findings demonstrate that administration of attenuated Salmonella leads to phenotypic and functional maturation of intratumoral myeloid cells making them less suppressive and hence enhancing the host’s anti-tumor immune response. Modalities that inhibit myeloid suppressor cells may be useful adjuncts in cancer immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号