首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of CDC2Zm and KNOTTED1 (KN1) in maize (Zea mays L.) and their cross-reacting proteins in barley (Hordeum vulgare L.) was studied using immunolocalization during in-vitro axillary shoot meristem proliferation and adventitious shoot meristem formation. Expression of CDC2Zm, a protein involved in cell division, roughly correlated with in-vitro cell proliferation and in the meristematic domes CDC2Zm expression was triggered during in-vitro proliferation. Analysis of the expression of KN1, a protein necessary for maintenance of the shoot meristem, showed that KN1 or KN1-homologue(s) expression was retained in meristematic cells during in-vitro proliferation of axillary shoot meristems. Multiple adventitious shoot meristems appeared to form directly from the KN1- or KN1 homologue(s)-expressing meristematic cells in the in-vitro proliferating meristematic domes. However, unlike Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) leaves ectopically expressing KN1 (G. Chuck et al., 1996 Plant Cell 8: 1277–1289; N. Sinha et al., 1993 Genes Dev. 7: 787–797), transgenic maize leaves over-expressing KN1 were unable to initiate adventitious shoot meristems on their surfaces either in planta or in vitro. Therefore, expression of KN1 is not the sole triggering factor responsible for inducing adventitious shoot meristem formation from in-vitro proliferating axillary shoot meristems in maize. Our results show that genes critical to cell division and plant development have utility in defining in-vitro plant morphogenesis at the molecular level and, in combination with transformation technologies, will be powerful tools in identifying the fundamental molecular and-or genetic triggering factor(s) responsible for reprogramming of plant cells during plant morphogenesis in-vitro. Received: 2 June 1997 / Accepted: 21 July 1997  相似文献   

2.
Rapidly proliferating, polyclonally stimulated mouse spleen lymphocytes were separated by density-gradient unit-gravity sedimentation. The following measurements were made on each fraction: the average intracellular water volume, the distribution of DNA content by flow microfluorometry, the rate of 3H-thymidine incorporation, and the intracellular pH. Fractions of cells with a small average intracellular volume were predominately in G0 or G1 phase of the cell cycle, while fractions of larger cells had higher proportions of cells in S or G2. Multiple regression analysis of the data for both T and B lymphocytes indicated that the intracellular pH of cells in G0, G1, or G2 is around pH 7.2, and that the intracellular pH of cells in S phase of the cell cycle is around pH 7.4.  相似文献   

3.
Some species of Cactaceae from the Sonoran Desert are characterized by a determinate growth pattern of the primary root, which is important for rapid lateral-root formation and seedling establishment. An analysis of the determinate root growth can be helpful for understanding the mechanism of meristem maintenance in plants in general. Stenocereus gummosus (Engelm.) Gibson & Horak and Pachycereus pringlei (S. Watson) Britton & Rose are characterized by an open type of root apical meristem. Immunohistochemical analysis of 5-bromo-2-deoxyuridine incorporation into S. gummosus showed that the percentage of cells passing through the S-phase in a 24-h period is the same within the zone where a population of relatively slowly proliferating cells could be established and above this zone in the meristem. This indicated the absence of the quiescent center (QC) in S. gummosus. During the second and the third days of growth, in the distal meristem portion of P. pringlei roots, a compact group of cells that had a cell cycle longer than in the proximal meristem was found, indicating the presence of the QC. However, later in development, the QC could not be detected in this species. These data suggest that during post-germination the absence of the establishment of the QC within the apical meristem and limited proliferative activity of initial cells are the main components of a determinate developmental program and that establishment of the QC is required for maintenance of the meristem and indeterminate root growth in plants.Abbreviations QC quiescent center - RCP root cap-protoderm - BrdU 5-bromo-2-deoxyuridine - FITC fluorescein isothiocyanate - DAPI 4,6-diamidino-2-phenylindole  相似文献   

4.
5.
Regulation of cell cycle in beta cells is poorly understood, especially in humans. We exploited here the recently described human pancreatic beta cell line EndoC-βH2 to set up experimental systems for cell cycle studies. We derived 2 populations from EndoC-βH2 cells that stably harbor the 2 genes encoding the Fucci fluorescent indicators of cell cycle, either from two vectors, or from a unique bicistronic vector. In proliferating non-synchronized cells, the 2 Fucci indicators revealed cells in the expected phases of cell cycle, with orange and green cells being in G1 and S/G2/M cells, respectively, and allowed the sorting of cells in different substeps of G1. The Fucci indicators also faithfully red out alterations in human beta cell proliferative activity since a mitogen-rich medium decreased the proportion of orange cells and inflated the green population, while reciprocal changes were observed when cells were induced to cease proliferation and increased expression of some beta cell genes. In the last situation, acquisition of a more differentiated beta cell phenotype correlates with an increased intensity in orange fluorescence. Hence Fucci beta cell lines provide new tools to address important questions regarding human beta cell cycle and differentiation.  相似文献   

6.
The DNA damage response pathways involve processes of double-strand break (DSB) repair and cell cycle checkpoint control to prevent or limit entry into S phase or mitosis in the presence of unrepaired damage. Checkpoints can function to permanently remove damaged cells from the actively proliferating population but can also halt the cell cycle temporarily to provide time for the repair of DSBs. Although efficient in their ability to limit genomic instability, checkpoints are not foolproof but carry inherent limitations. Recent work has demonstrated that the G1/S checkpoint is slowly activated and allows cells to enter S phase in the presence of unrepaired DSBs for about 4-6?h post irradiation. During this time, only a slowing but not abolition of S-phase entry is observed. The G2/M checkpoint, in contrast, is quickly activated but only responds to a level of 10-20 DSBs such that cells with a low number of DSBs do not initiate the checkpoint or terminate arrest before repair is complete. Here, we discuss the limitations of these checkpoints in the context of the current knowledge of the factors involved. We suggest that the time needed to fully activate G1/S arrest reflects the existence of a restriction point in G1-phase progression. This point has previously been defined as the point when mitogen starvation fails to prevent cells from entering S phase. However, cells that passed the restriction point can respond to DSBs, albeit with reduced efficiency.  相似文献   

7.
Solid cancers are composed of heterogeneous zones containing proliferating and quiescent cells. Despite considerable insight into the molecular mechanisms underlying aberrant cell cycle progression, there is limited understanding of the relationship between the cell cycle on the one side, and melanoma cell motility, invasion, and drug sensitivity on the other side. Utilizing the fluorescent ubiquitination‐based cell cycle indicator (FUCCI) to longitudinally monitor proliferation and migration of melanoma cells in 3D culture and in vivo, we found that invading melanoma cells cycle actively, while G1‐arrested cells showed decreased invasion. Melanoma cells in a hypoxic environment or treated with mitogen‐activated protein kinase pathway inhibitors remained G1‐arrested for extended periods of time, with proliferation and invasion resuming after re‐exposure to a more favorable environment. We challenge the idea that the invasive and proliferative capacity of melanoma cells are mutually exclusive and further demonstrate that a reversibly G1‐arrested subpopulation survives in the presence of targeted therapies.  相似文献   

8.
MACLEOD  R. D. 《Annals of botany》1976,40(4):865-875
The relative proportions of the various proliferating and quiescentcells, cell doubling time, mean cycle time and the durationof the mitotic cycle and its various phases as measured fromthe passage of labelled cells through mitosis have been determinedfor the initial cells of the cap, epidermis, cortex and stele,for the epidermis together with the cortex and for the steleat various distances basal to the cap-quiescent centre boundaryin 1-cm long lateral roots of Vicia faba. Cell doubling timegenerally increased basally along these tissues as a resultof a gradual decrease in the size of the proliferating populationof cells. Cycle time of the fast-dividing cell population, however,was less between 750 and 800 µm basal to the cap-quiescentcentre boundary than in the corresponding initial cells largelyas a result of a decrease in the duration of G1, although changesalso took place in the durations of the other phases of themitotic cycle as cells were displaced basally along the root.From data reported in this paper as well as other results inthe literature, it appears that the proportions of quiescentcells arrested in G1 and G2 vary in the different groups ofinitial cells. Moreover, the proportion arrested in G1 appearsto decrease basally along each tissue, while that in G2 increases.  相似文献   

9.
10.
The rate of proliferation of cells depends on the proportion of cycling cells and the frequency of cell division. Here, we describe in detail methods for quantifying the proliferative behavior of specific cell types in situ, and use the method to examine cell cycle dynamics in two neural crest derivatives—dorsal root ganglia (DRG) using frozen sections, and the enteric nervous system (ENS) using wholemount preparations. In DRG, our data reveal a significant increase in cell cycle length and a decrease in the number of cycling Sox10+ progenitor cells at E12.5–E13.5, which coincides with the commencement of glial cell generation. In the ENS, the vast majority of Sox10+ cells remain proliferative during embryonic development, with only relatively minor changes in cell cycle parameters. Previous studies have identified proliferating cells expressing neuronal markers in the developing ENS; our data suggest that most cells undergoing neuronal differentiation in the developing gut commence expression of neuronal markers during G2 phase of their last division. Combined with previous studies, our findings show that different populations of neural crest‐derived cells show tissue‐specific patterns of proliferation. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 287–301, 2015  相似文献   

11.
12.
Summary During development and differentiation of the cellular slime mould Dictyostelium discoideum there appears to be a relationship between the cell cycle and cell fate: amoebae halted in G2 phase during early development differentiate into spores whereas stalk cells are formed from amoebae halted in GI phase. It is proposed that this is because a major effect of the cell cycle is to generate heterogeneity in the cell surface properties of the developing amoebae.  相似文献   

13.
We have used monoclonal antibodies to statin (S-44) and a cyclin-like protein (S-132) to examine the distribution of these two antigens in proliferating and in nonproliferating populations of cells. We have found that this cyclin-like protein is present in proliferating fibroblasts, whereas statin is absent from these same cell populations; in contrast, in senescent populations of fibroblasts the cyclin-like antigen disappears and statin labeling of nuclei appears. During myogenesis in rat muscle cell cultures, S-132 labeling is present in proliferating myoblasts and disappears after cells fuse and differentiate as multinucleated myotubes. In contrast, statin is absent from proliferating myoblasts, but appears when these cells become postmitotic and begin to differentiate. Similar results were seen during chick myogenesis. We have also found similar results during serum-starvation-induced differentiation in neuroblastoma cells. These results indicate that the cyclin-like protein disappears and statin appears upon commitment to differentiation in vitro, and the presence or the absence of these proteins appears to provide cellular markers for the transition from the proliferative to the nonproliferative state during differentiation.  相似文献   

14.
In order to provide evidence as to whether sex chromatin (SC) of interphase cells is equivalent to the late replicating X chromosome in female mammalian cells, time-lapse cinephotometric and autoradiographic methods were used to give precise data for comparison of the DNA replication patterns of SC with that of each of the X chromosomes throughout the S period. Canine kidney epithelial cells were selected because they have distinct large metacentric X chromosomes and typical SC. Time-lapse cinephotometry was used to avoid possible alteration of DNA synthesis by chemical cell synchronization agents. Determination of the incidence of SC during the stages of the cell life cycle of proliferating cells of the same origin was performed in order hopefully to clarify conflicting reports on the subject. Our results clearly show that time and intensity of the SC replication throughout S period is like that of the late replicating X chromosome and unlike that of the early replicating X chromosome. The incidence of SC in proliferating cells in culture was found to vary with the stage of the cell life cycle, increasing with increasing postmitotic interval — least in G1, greater in S, and greatest in G2. The SC incidence increased strikingly from G1 to S and a less marked increase was observed between S and G2.  相似文献   

15.
16.
17.
The cell-cycle duration and the growth fraction were estimated in the shoot meristem of Sinapis alba L. during the transition from the vegetative to the floral condition. Compared with the vegetative meristem, the cell-cycle length was reduced from 86 to 32 h and the growth fraction, i.e. the proportion of rapidly cycling cells, was increased from 30–40% to 50–60%. These changes were detectable as early as 30 h after the start of the single inductive long day. The faster cell cycle in the evoked meristem was achieved by a shortening of the G1 (pre-DNA synthesis), S (DNA synthesis) and G2 (post-DNA synthesis) phases of the cycle. In both vegetative and evoked meristems, both-the central and peripheral zones were mosaics of rapidly cycling and non-cycling cells, but the growth fraction was always higher in the peripheral zone.Abbreviations G1 pre-DNA synthesis phase - G2 post-DNA synthesis phase - GF growth fraction - M mitosis phase - PLM percentage-labelled-mitoses method - S DNA synthesis phase - TdR thymidine  相似文献   

18.
A proliferating population of cells may be considered complex when its proliferative or growth fraction P is lower than 1 and/or when it is formed by subpopulations with different mean cycle times. The present paper shows that in such complex populations exponential growth is consistent with a steady-state distribution of cells. Obviously, when P=1 then cell distribution is only a function of cell age. An analytical model has been developed to study complex populations including both quiescent fractions formed by cells with unreplicated genome (G(0) cells) and cells with fully duplicated chromosomes (Q(2) cells). The model also considers those quasi-quiescent cells in their last transit through G(1) and S (Q(1) and Q(s) cells) before becoming quiescent. In order to solve the difficulties of a direct analysis of the whole population, its kinetic parameters have been obtained by studying the negative exponential distribution of two subpopulations: one formed by the proliferating cells and another formed by the quasi-quiescent cells. Additionally, the model could be applied when quiescence is initiated at any other cycle phase different from G(1) and G(2), for instance, cells in the process of replicating their DNA or being at any other mitotic phases. The utility of the method was illustrated in populations which constitute the root meristems of both Allium cepa L. and Pisum sativum L. Three facts should be stressed: (1) the method seems to be rather powerful because it can be carried out from different sets of experimentally measured parameters; (2) the rate of division and, therefore, the population doubling time can be easily estimated by this method; and (3) it also allows the determination of the amount of cells that had become quiescent either before they had replicated their DNA (G(0)) or after having completed their replication (Q(2)), as well as those quasi-quiescent cells which are progressing throughout their last pre-replicative and replicative periods (thus Q(1) and Q(s), respectively).  相似文献   

19.
The stolons of Nephrolepis biserrata (sw.) Schott are thin axes that grow rapidly (from 2 to 4 mm per day) in the controlled conditions applied. In the cylindro-conical meristem, three histological zones are defined. Cell cycle duration was determined for each zone by autoradiographic methods after incorporation of tritiated thymidine and confirmed by the colchicine-induced metaphase-accumulation technique. The apical cell and its derivatives (Zone 1) are mitotically more active (cell cycle duration: 80 hr) than the cells of the subapical zones (2 and 3), where cell cycle lengths are 142 hr and 95 hr respectively. These data, compared to previous results, give evidence for the main role played by the relative rate of division of the apical cell compared to that of lateral cells in the organization and the shape of the meristem of pteridophytes. Moreover, the apical cell appears to be unique in having a differentiated cytological aspect not usually associated with an intensely proliferating cell.  相似文献   

20.
Age-related changes in the cytokinetics of human diploid cells in vitro have been compared in normal cultures and in cultures in which lifespan has been prolonged by the addition of hydrocortisone to the medium. For both cultures, with advancing age the fraction of cells in the actively proliferating pool decreased and the intercellular variation in cell cycle times increased. The average cell cycle time was prolonged during aging due almost entirely to changes in the duration of G1. The duration of S remained constant, while a small delay in G2 was observed in late passage cells near the end of their lifespan. Although the same pattern of change in proliferative parameters occurred in both control and hydrocortisone-treated cultures, the changes were somewhat delayed in the presence of the steroid. The results are interpreted in terms of several cell cycle models and suggest that the events controlling cell proliferation are sensitive to hydrocortisone modulation during the G1 and possibly the G2 periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号