首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang G  Qi C  Fan GH  Zhou HY  Chen SD 《FEBS letters》2005,579(18):4005-4011
In vivo and in vitro studies have suggested a neuroprotective role for Pituitary adenylate cyclase activating polypeptide (PACAP) against neuronal insults. Here, we showed that PACAP27 protects against neurotoxicity induced by rotenone, a mitochondrial complex I inhibitor that has been implicated in the pathogenesis of Parkinson's disease (PD). The neuroprotective effect of PACAP27 was dose-dependent and blocked by its specific receptor antagonist, PACAP6-27. The effects of PACAP27 on rotenone-induced cell death were mimicked by dibutyryl-cAMP (db-cAMP), forskolin and prevented by the PKA inhibitor H89, the ERK inhibitor PD98059 and the p38 inhibitor SB203580. PACAP27 administration blocked rotenone-induced increases in the level of caspase-3-like activity, whereas could not restore mitochondrial activity damaged by rotenone. Thus, our results demonstrate that PACAP27 has a neuroprotective role against rotenone-induced neurotoxicity in neuronal differentiated PC12 cells and the neuroprotective effects of PACAP are associated with activation of MAP kinase pathways by PKA and with inhibition of caspase-3 activity; the signaling mechanism appears to be mediated through mitochondrial-independent pathways.  相似文献   

2.
Mitochondrial dysfunctions have been associated with neuronal apoptosis and are characteristic of neurodegenerative conditions. Caspases play a central role in apoptosis; however, their involvement in mitochondrial dysfunction-induced neuronal apoptosis remains elusive. In the present report using rotenone, a complex I inhibitor that causes mitochondrial dysfunction, we determined the initiator caspase and its role in cell death in primary cultures of cortical neurons from young adult mice (1-2 months old). By pretreating the cells with a cell-permeable, biotinylated pan-caspase inhibitor that irreversibly binds to and traps the active caspase, we identified caspase-2 as an initiator caspase activated in rotenone-treated primary neurons. Loss of caspase-2 inhibited rotenone-induced apoptosis; however, these neurons underwent a delayed cell death by necrosis. We further found that caspase-2 acts upstream of mitochondria to mediate rotenone-induced apoptosis in neurons. The loss of caspase-2 significantly inhibited rotenone-induced activation of Bid and Bax and the release of cytochrome c and apoptosis inducing factor from mitochondria. Rotenone-induced downstream activation of caspase-3 and caspase-9 were also inhibited in the neurons lacking caspase-2. Autophagy was enhanced in caspase-2 knock-out neurons after rotenone treatment, and this response was important in prolonging neuronal survival. In summary, the present study identifies a novel function of caspase-2 in mitochondrial oxidative stress-induced apoptosis in neurons cultured from young adult mice.  相似文献   

3.
In the present study, using a human neuroblastoma SK-N-SH cells, we explored antioxidant, mitochondrial protective and antiapoptotic properties of mangiferin against rotenone-mediated cytotoxicity. SK-N-SH cells are divided into four experimental groups based on 3-(4,5-dimethyl2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay—untreated cells, cells incubated with rotenone (100 nM), cells treated with mangiferin (20 μg) (pretreatment 4 h before) + rotenone (100 nM) and mangiferin alone treated. 24 h after treatment with rotenone and 28 h after treatment with mangiferin, levels of ATP thiobarbituricacid reactive substances and reduced glutathione and activities of enzymatic antioxidants including superoxide dismutase, catalase and glutathione peroxidise were measured. Finally mitochondrial transmembrane potential and expressions of apoptotic protein were also analysed. Pre-treatment with mangiferin significantly enhanced cell viability, ameliorated decrease in mitochondrial membrane potential and decreased rotenone-induced apoptosis in the cellular model of Parkinson’s disease. Moreover oxidative imbalance induced by rotenone was partially rectified by mangiferin. Our results indicated that anti-apoptotic properties of this natural compound due to its antioxidant and mitochondrial protective function protect rotenone induced cytotoxicity.  相似文献   

4.
Prostaglandin A1 inhibits rotenone-induced apoptosis in SH-SY5Y cells   总被引:6,自引:0,他引:6  
The degeneration of nigral dopamine neurons in Parkinson's disease (PD) reportedly involves a defect in brain mitochondrial complex I in association with the activation of nuclear factor-kappaB (NF-kappaB) and caspase-3. To elucidate molecular mechanisms possibly linking these events, as well as to evaluate the neuroprotective potential of the cyclopentenone prostaglandin A1 (PGA1), an inducer of heat shock proteins (HSPs), we exposed human dopaminergic SH-SY5Y cells to the complex I inhibitor rotenone. Dose-dependent apoptosis was preceded by the nuclear translocation of NF-kappaB and then the activation of caspase-3 over the ensuing 24 h. PGA1 increased the expression of HSP70 and HSP27 and protected against rotenone-induced apoptosis, without increasing necrotic death. PGA1 blocked the rotenone-induced nuclear translocation of NF-kappaB and attenuated, but did not abolish, the caspase-3 elevation. Unexpectedly, the caspase-3 inhibitor, Ac-DEVD.CHO (DEVD), at a concentration that completely prevented the caspase-3 elevation produced by rotenone, failed to protect against apoptosis. These results suggest that complex I deficiency in dopamine cells can induce apoptosis by a process involving early NF-kappaB nuclear translocation and caspase-3 activation. PGA1 appears to protect against rotenone-induced cell death by inducing HSPs and blocking nuclear translocation of NF-kappaB in a process that attenuates caspase-3 activation, but is not mediated by its inhibition.  相似文献   

5.
There are several factors, like oxidative stress and neurons loss, involving neurodegenerative diseases such as Parkinson’s disease (PD). The combination of antioxidant and anti-apoptotic agent is becoming a promising approach to fight against PD. This study evaluates the hypothesis that paeoniflorin (PF) and β-ecdysterone (β-Ecd) synergize to protect PC12 cells against toxicity induced by PD-related neurotoxin rotenone. The combination of PF and β-Ecd, hereafter referred to as the PF/β-Ecd, at suboptimal concentrations increased the viability of rotenone-exposed PC12 cells in a synergistic manner. PF and β-Ecd cooperate to attenuate the rotenone-induced apoptosis by decrease in Bax expression, caspase-9 activity, and caspase-3 activity. PF or PF/β-Ecd, but not β-Ecd, inhibited rotenone-triggered protein kinase C-δkinase C-δ (PKCδ) upregulation and nuclear factor κB (NF-κB) activation. β-Ecd or PF/β-Ecd, but not PF, enhanced serine/threonine protein kinase (Akt) activation, promoted nuclear factor E2-related factor 2 (Nrf2) nuclear accumulation, suppressed reactive oxygen species (ROS) production. Neuroprotection of PF/β-Ecd could be completely blocked by PKCδ inhibitor rottlerin plus Akt specific inhibitor LY294002. Dual blockade of the PKCδ/NF-κB pathway by PF and activation of Akt/Nrf2 pathway by β-Ecd results in a synergistic neuroprotective effect against rotenone-induced neurotoxicity in vitro. These findings provide the rationale for determining the in vivo activity of combined therapy with PF and β-Ecd against PD.  相似文献   

6.
We recently showed that activation of ATP-sensitive potassium (KATP) channels in PC12 cells induces protection against the neurotoxic effect of rotenone, a mitochondrial complex I inhibitor. In this study, we sought to determine the locus of the KATP channels that mediate this protection in PC12 cells. We found that pretreatment of PC12 cells with diazoxide, a mitochondrial KATP channel selective opener, dose-dependently increases cell viability against rotenone-induced cell death as indicated in trypan blue exclusion assays. The protective effect of this preconditioning is attenuated by 5-hydroxydecanoic acid (5-HD), a selective mitochondrial KATP channel antagonist but not in the presence of HMR-1098, a selective plasma membrane KATP potassium channel antagonist. In contrast, P-1075, a selective plasma membrane KATP channel opener, does not induce protection. Using specific antibodies against SUR1 and Kir6.1, we detected immunoreactive proteins of apparent molecular masses 155 and 50 kDa, corresponding to those previously reported for SUR1 and Kir6.1, respectively, in the mitochondria-enriched fraction of PC12 cells. In addition, whole cell patch-clamp studies revealed that inward currents in PC12 cells are insensitive to P-1075, HMR-1098, glibenclamide and diazoxide, indicating that functional plasma membrane KATP channels are negligible. Taken together, our results demonstrate for the first time that activation of mitochondrial KATP channels elicits protection against rotenone-induced cell death.  相似文献   

7.
Zonisamide (ZNS), an antiepileptic drug having beneficial effects also against Parkinson’s disease symptoms, has proven to display an antioxidant effects in different experimental models. In the present study, the effects of ZNS on rotenone-induced cell injury were investigated in human neuroblastoma SH-SY5Y cells differentiated towards a neuronal phenotype. Cell cultures were exposed for 24 h to 500 nM rotenone with or without pre-treatment with 10–100 μM ZNS. Then, the following parameters were analyzed: (a) cell viability; (b) intracellular reactive oxygen species production; (c) mitochondrial transmembrane potential; (d) cell necrosis and apoptosis; (e) caspase-3 activity. ZNS dose-dependently suppressed rotenone-induced cell damage through a decrease in intracellular ROS production, and restoring mitochondrial membrane potential. Similarly to ZNS effects, the treatment with N-acetyl-cysteine (100 μM) displayed significant protective effects against rotenone-induced ROS production and Δψm at 4 and 12 h respectively, reaching the maximal extent at 24 h. Additionally, ZNS displayed antiapoptotic effects, as demonstrated by flow cytometric analysis of annexin V/propidium iodide double staining, and significant attenuated rotenone-increased caspase 3 activity. On the whole, these findings suggest that ZNS preserves mitochondrial functions and counteracts apoptotic signalling mechanisms mainly by an antioxidant action. Thus, ZNS might have beneficial effect against neuronal cell degeneration in different experimental models involving mitochondrial dysfunction.  相似文献   

8.
The contribution of oxidative stress to the pathophysiology of depression has been described in numerous studies. Particularly, an increased production of reactive oxygen species (ROS) caused by mitochondrial dysfunction can lead to neuronal cell death. Human neuroblastoma SH-SY5Y cells were used to investigate the neuroprotective effect of the antidepressant duloxetine against rotenone-induced oxidative stress. SH-SY5Y cells were pretreated with duloxetine (1–5 µM) for 24 h followed by a 24-h rotenone exposure (10 µM). The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) inhibitor LY294002 (10 µM) and the heme oxygenase 1 (HO-1) inhibitor zinc protoporphyrin IX-ZnPP (5 µM) were added to cultures 1 h prior duloxetine treatments. After treatments cell viability and ROS generation were assessed. NF-E2-related factor-2 (Nrf2) nuclear translocation was assessed by immunofluorescent staining after 4 and 8 h of duloxetine incubation. Furthermore, the Nrf2 and HO-1 mRNA expression was carried out after 4–48 h of duloxetine treatment by qRT-PCR. Duloxetine pretreatment antagonized rotenone-induced overproduction of ROS and cell death in SH-SY5Y cells. In addition, a 1-h pretreatment with LY294002 abolished duloxetine’s protective effect. Duloxetine also induced nuclear translocation of the Nrf2 and the expression of its target gene, HO-1. Finally, the HO-1 inhibitor, ZnPP, suppressed the duloxetine protective effect. Overall, these results indicate that the mechanism of duloxetine neuroprotective action against oxidative stress and cell death might rely on the Akt/Nrf2/HO-1 pathways.  相似文献   

9.
The accumulation of extracellular amyloid-β peptide (Aβ) has been considered as one of the important causes of Alzheimer’s disease (AD), the most prevalent form of dementia. Hydroxysafflor yellow A (HSYA), a major active chemical component isolated from Carthamus tinctorius L., has been shown to possess neuroprotective actions in various ischemic models in vivo. The present study aimed to investigate the potential protective effect of HSYA against Aβ-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. The PC12 cells were pretreated with different concentrations (20, 40 and 80 μM) of HSYA for 2 h and then further treated with Aβ (20 μM) for 24 h. The results showed that Aβ could significantly decrease cell viability, glutathione level, mitochondrial membrane potential and the ratio of Bcl-2/Bax protein expression, while elevate the release of lactate dehydrogenase, the formation of DNA fragmentation, the levels of malondialdehyde and intracellular reactive oxygen species in PC12 cells. However, pretreatment with HSYA could effectively reverse these changes induced by Aβ in PC12 cells. Our experimental results demonstrate that HSYA may be a potential neuroprotective agent warranting further development for treatment of AD.  相似文献   

10.
Dendropanax morbifera Leveille (Araliaceae) is well known in Korean traditional medicine for a variety of diseases. Rotenone is a commonly used neurotoxin to produce in vivo and in vitro Parkinson’s disease models. This study was designed to elucidate the processes underlying neuroprotection of rutin, a bioflavonoid isolated from D. morbifera Leveille in cellular models of rotenone-induced toxicity. We found that rutin significantly decreased rotenone-induced generation of reactive oxygen species levels in SH-SY5Y cells. Rutin protected the increased level of intracellular Ca2+ and depleted level of mitochondrial membrane potential (ΔΨm) induced by rotenone. Furthermore, it prevented the decreased ratio of Bax/Bcl-2 caused by rotenone treatment. Additionally, rutin protected SH-SY5Y cells from rotenone-induced caspase-9 and caspase-3 activation and apoptotic cell death. We also observed that rutin repressed rotenone-induced c-Jun N-terminal kinase and p38 mitogen-activated protein kinase phosphorylation. These results suggest that rutin may have therapeutic potential for the treatment of neurodegenerative diseases associated with oxidative stress.  相似文献   

11.
Rotenone, a commonly used pesticide, is well documented to induce selective degeneration in dopaminergic neurons and motor dysfunction. Such rotenone-induced neurodegenration has been primarily suggested through mitochondria-mediated apoptosis and reactive oxygen species (ROS) generation. But the status of rotenone induced changes in liver, the major metabolic site is poorly investigated. Thus, the present investigation was aimed to study the oxidative stress-induced cytotoxicity and apoptotic cell death in human liver cells-HepG2 receiving experimental exposure of rotenone (12.5–250 μM) for 24 h. Rotenone depicted a dose-dependent cytotoxic response in HepG2 cells. These cytotoxic responses were in concurrence with the markers associated with oxidative stress such as an increase in ROS generation and lipid peroxidation as well as a decrease in the glutathione, catalase, and superoxide dismutase levels. The decrease in mitochondrial membrane potential also confirms the impaired mitochondrial activity. The events of cytotoxicity and oxidative stress were found to be associated with up-regulation in the expressions (mRNA and protein) of pro-apoptotic markers viz., p53, Bax, and caspase-3, and down-regulation of anti-apoptotic marker Bcl-2. The data obtain in this study indicate that rotenone-induced cytotoxicity in HepG2 cells via ROS-induced oxidative stress and mitochondria-mediated apoptosis involving p53, Bax/Bcl-2, and caspase-3.  相似文献   

12.
Celastrol, a potent natural triterpene and one of the most promising medicinal molecules, is known to possess a broad range of biological activity. Rotenone, a pesticide and complex I inhibitor, is commonly used to produce experimental models of Parkinson’s disease both in vivo and in vitro. The present study was designed to examine the effects of celastrol on cell injury induced by rotenone in the human dopaminergic cells and to elucidate the possible mechanistic clues in its neuroprotective action. We demonstrate that celastrol protects SH-SY5Y cells from rotenone-induced cellular injury and apoptotic cell death. Celastrol also prevented the increased generation of reactive oxygen species and mitochondrial membrane potential (ΔΨm) loss induced by rotenone. Similarly, celastrol treatment inhibited cytochrome c release, Bax/Bcl-2 ratio changes, and caspase-9/3 activation. Celastrol specifically inhibited rotenone-evoked p38 mitogen-activated protein kinase activation in SH-SY5Y cells. These data suggest that celastrol may serve as a potent agent for prevention of neurotoxin-induced neurodegeneration through multiple mechanisms and thus has therapeutic potential for the treatment of neurodegenerative diseases.  相似文献   

13.
Parkinson’s disease (PD) is a slowly progressive neurodegenerative movement disorder. Apoptosis, neuroinflammation, and oxidative stress are the current hypothesized mechanisms for PD pathogenesis. Tetramethylpyrazine (TMP), the major bioactive component of Ligusticum wallichii Franchat (ChuanXiong), Family Apiaceae, reportedly has anti-apoptotic, anti-inflammatory and antioxidant effects. This study investigated the role of ‘TMP’ in preventing rotenone-induced neurobiological and behavioral sequelae. A preliminary dose–response study was conducted where rats received TMP (10, 20, and 40 mg/kg, i.p.) concomitantly with rotenone (2 mg/kg, s.c.) for 4 weeks. Catalepsy, locomotor activity, striatal dopamine content, and tyrosine hydroxylase “TH” and α-synuclein immunoreactivity were evaluated. The selected TMP dose (20 mg/kg) was used for western blot analysis of Bax, Bcl2, and DJ-1, immunohistochemical detection of nuclear factor kappa B (NF-кB), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and glial fibrillary acidic protein (GFAP) expression, in addition to biochemical analysis of caspase-3 activity, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) levels. Results showed that TMP (20 mg/kg) significantly improved midbrain and striatal TH expression and striatal dopamine content as well as the motor deficits, compared to rotenone-treated group. These results were correlated with reduction in caspase-3 activity and α-synuclein expression, along with improvement of midbrain and striatal Bax/Bcl2 ratio compared to rotenone-treated group. TMP also attenuated rotenone-induced upregulation of Nrf2/HO-1 pathway. Furthermore, TMP downregulated rotenone-induced neuroinflammation markers: NF-кB, iNOS, COX2, and GFAP expression in both the midbrain and striatum. Taken together, the current study suggests that TMP is entitled to, at least partially, preventing PD neurobiological and behavioral deficits by virtue of its anti-apoptotic, anti-inflammatory, and antioxidant actions.  相似文献   

14.

The detrimental impact on the food chain due to the overuse of rotenone is partly responsible for alpha-synuclein (α-syn) mediated neurotoxicity. It is hypothesized that rotenone overdose leads to cytosolic proteopathy resulting in modulation of apoptosis and autophagic pathways. The aim of our study is to explore the neuroprotective role of quercetin, a beneficial polyphenol against rotenone-induced neurotoxicity in dopaminergic human SH-SY5Y cell lines. In our study we demonstrated the correlation of rotenone-induced neurotoxicity through elevation of intracellular reactive oxygen species (ROS) and imbalance in the mitochondrial membrane potential (MMP). Moreover, the morphological distortion of cell, condensation of nuclei, externalization of the inner phosphatidylserine, cleavage of caspase 3, and Poly ADP Ribose Polymerase (PARP) confirmed apoptosis. However, all these lethal effects were ameliorated by treatment of quercetin to the cells. On the other hand rotenone has a strong effect on autophagy which is a regulated degrading and recycling cellular process to remove dysfunctional proteins. Indeed, rotenone-mediated autophagy resulted in the enhancement of autophagosome-bound microtubule-associated protein light chain-3 (LC3-II) expression. Furthermore, excess accumulation of acidic vesicles was detected in presence of rotenone. Lysosome associated membrane protein (LAMP-2A) is yet another crucial protein that recruits overexpressed or misfolded proteins into the lumen of lysosome to trigger autophagy. In all cases the impact of rotenone on the cells acquired significant protection through quercetin treatment. In the present work we therefore opine the prospects of quercetin as a therapeutic candidate against neurotoxicity.

  相似文献   

15.
Beta-amyloid peptide (Aβ), a major protein component of senile plaques, has been considered as a critical cause in the pathogenesis of Alzheimer’s disease (AD). Modulation of the Aβ-induced neurotoxicity has emerged as a possible therapeutic approach to ameliorate the onset and progression of AD. The present study aimed to evaluate the protective effect of isorhynchophylline, an oxindole alkaloid isolated from a Chinese herb Uncaria rhynchophylla, on Aβ-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. The results showed that pretreatment with isorhynchophylline significantly elevated cell viability, decreased the levels of intracellular reactive oxygen species and malondialdehyde, increased the level of glutathione, and stabilized mitochondrial membrane potential in Aβ25-35-treated PC12 cells. In addition, isorhynchophylline significantly suppressed the formation of DNA fragmentation and the activity of caspase-3 and moderated the ratio of Bcl-2/Bax. These results indicate that isorhynchophylline exerts a neuroprotective effect against Aβ25-35-induced neurotoxicity in PC12 cells, at least in part, via inhibiting oxidative stress and suppressing the mitochondrial pathway of cellular apoptosis.  相似文献   

16.
17.
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is primarily characterized by the degeneration of dopaminergic neurons in the nigrostriatal pathway. Previous studies have demonstrated that chronic systemic exposure of Lewis rats to rotenone produced many features of PD, and cerebral tauopathy was also detected in the case of severe weight loss. The present study was designed to assess the neurotoxicity of rotenone after daily oral administration for 28 days at several doses in C57BL/6 mice. In addition, we examined the protective effects of 4-phenylbutyrate (4-PBA) on nigral dopamine (DA) neurons in rotenone-treated mice. 4-PBA was injected intraperitoneally daily 30 min before each oral administration of rotenone. Chronic oral administration of rotenone at high doses induced specific nigrostriatal DA neurodegeneration, motor deficits and the up-regulation of alpha-synuclein in the surviving DA neurons. In contrast to the Lewis rat model, cerebral tauopathy was not detected in this mouse model. 4-PBA inhibited rotenone-induced neuronal death and decreased the protein level of alpha-synuclein. These results suggest that this rotenone mouse model may be useful for understanding the mechanism of DA neurodegeneration in PD, and that 4-PBA has a neuroprotective effect in the treatment of PD.  相似文献   

18.
Beta-amyloid peptide (Aβ), a major protein component of senile plaques associated with Alzheimer’s disease (AD), is also directly neurotoxic. Mitigation of Aβ-induced neurotoxicity is thus a possible therapeutic approach to delay or prevent onset and progression of AD. This study evaluated the protective effect of Bajijiasu (β- d-fructofuranosyl (2–2) β- d-fructofuranosyl), a dimeric fructose isolated from the Chinese herb Radix Morinda officinalis, on Aβ-induced neurotoxicity in pheochromocytoma (PC12) cells. Bajijiasu alone had no endogenous neurotoxicity up to 200 μM. Brief pretreatment with 10–40 μM Bajijiasu (2 h) significantly reversed the reduction in cell viability induced by subsequent 24 h exposure to Aβ25–35 (21 μM) as measured by MTT and LDH assays, and reduced Aβ25–35-induced apoptosis as indicated by reduced annexin V-EGFP staining. Bajijiasu also decreased the accumulation of intracellular reactive oxygen species and the lipid peroxidation product malondialdehyde in PC12 cells, upregulated expression of glutathione reductase and superoxide dismutase, prevented depolarization of the mitochondrial membrane potential (Ψm), and blocked Aβ25–35-induced increases in [Ca2+] i . Furthermore, Bajijiasu reversed Aβ25–35-induced changes in the expression levels of p21, CDK4, E2F1, Bax, NF-κB p65, and caspase-3. Bajijiasu is neuroprotective against Aβ25–35-induced neurotoxicity in PC12 cells, likely by protecting against oxidative stress and ensuing apoptosis.  相似文献   

19.
Rhus verniciflua Stokes (RVS), traditionally used as a food supplement and in traditional herbal medicine for centuries in Korea, is known to possess various pharmacological properties. Environmental neurotoxins such as rotenone, a specific inhibitor of complex I provide models of Parkinson’s disease (PD) both in vivo and in vitro. In this study, we investigated the neuroprotective effect of RVS against rotenone-induced toxicity in human dopaminergic cells, SH-SY5Y. Cells exposed to rotenone for 24 h-induced cellular injury and apoptotic cell death. Pretreatment of cells with RVS provided significant protection to SH-SY5Y cells. Further, RVS offered remarkable protection against rotenone-induced oxidative stress and markedly inhibited mitochondrial membrane potential (MMP) disruption. RVS also attenuated the up-regulation of Bax, Caspase-9 and Caspase-3 and down-regulation of Bcl-2. Moreover, pretreatment with RVS prevented the decrease in tyrosine hydroxylase (TH) levels in SH-SY5Y cells. Interestingly, RVS conferred profound protection to human dopaminergic cells by preventing the downregulation of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). These results suggest that RVS may protect dopaminergic neurons against rotenone-induced apoptosis by multiple functions and contribute to neuroprotection in neurodegenerative diseases, such as PD.  相似文献   

20.
In the present study, we investigated the protective mechanism of paeoniflorin (PF), a monoterpene glycoside extracted from Radix Paeoniae alba roots, on MPP+-induced neurotoxicity in cultured rat pheochromocytoma cells (PC12). Our work included examination of cell viability assessment, amounts of released lactic dehydrogenase (LDH), intracellular Ca2+ concentration, cell apoptosis, mitochondrial membrane potential, caspase-3 activity, and expression profiling of two apoptosis-related genes (Bcl-2 and Bax). It was shown that, PF functioned as an MPP+ antagonist, being able to suppress apoptosis, decrease LDH release and Ca2+ concentration, attenuate membrane potential collapse and, inhibit caspase-3 activation, decrease in Bax/Bcl-2 ratio. These observations suggest that PF could protect PC12 cells against MPP+-induced injury and the mechanism PF’s neuroprotective effect was closely associated with Bcl-2 up-regulation and Bax down-regulation. PF has neuroprotective effects on MPP+-induced apoptosis in PC12 cells via regulating mitochondrial membrane potential and Bcl-2/Bax/caspase-3 signaling pathways, and this new insight will help develop a PF-based therapeutic strategy for treatmenting neurodegenerative diseases and injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号