首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
STAT3 signaling constitutes an important negative feedback mechanism for the maintenance of immune homeostasis, a suppressive signal for the Th1 immune response in murine macrophages, and a cancer immune evasion signal in various immune cells. The strategy for STAT3 signal inhibition should be considered, because these features could impede effective cancer immunotherapy. We have evaluated the effects of STAT3 inactivation in dendritic cells (DCs) on immune responses in mice and humans. DCs derived from LysMcre/STAT3(flox/flox) mice displayed higher cytokine production in response to TLR stimulation, activated T cells more efficiently, and were more resistant to the suppression of cytokine production by cancer-derived immunosuppressive factors compared with DCs from control littermates. Antitumor activities of STAT3-depleted and control DCs were compared by intratumoral administration of gp70 Ag peptide-pulsed DCs in the therapeutic MC38 tumor model. Intratumoral administration of STAT3-depleted DCs significantly inhibited MC38 tumor growth of both injected and nontreated remote tumors. The inhibition was accompanied by an increase in gp70-specific T cell response as well as in systemic Th1 immune response. STAT3-depleted human DCs with adenoviral STAT3 short hairpin RNA were also capable of producing more cytokines with TLR stimulation and more resistant to cancer-derived factors, and they induced tumor Ag-specific T cells more efficiently than control DCs. The identified role of DC STAT3 signaling in both in vivo therapeutic tumor models in mice and in vitro-specific T cell induction in humans indicates that STAT3-inactivated DCs may be a promising approach for cancer immunotherapy.  相似文献   

2.
To elicit a therapeutic antitumor immune response, dendritic cells (DCs) have been employed as a cellular adjuvant. Among various DC-based approaches, fusion of DCs and tumor cells potentially confers not only DC functionality, but also a continuous source of unaltered tumor antigens. We have recently demonstrated successful generation of fusion hybrids by a large-scale electrofusion technique. The immunogenicity and therapeutic potential of fusion hybrids were further analyzed in a model system of a murine melanoma cell line expressing beta-galactosidase (beta-gal) as a surrogate tumor antigen. A single vaccination with fusion hybrids plus IL-12 induced a therapeutic immune response against 3-day established pulmonary metastases. This immunotherapy was beta-gal specific and involved both CD4 and CD8 T cells. In vitro, fusion hybrids stimulated specific IFN-gamma secretion from both CD4 and CD8 immune T cells. They also nonspecifically induced IL-10 secretion from CD4 but not CD8 T cells. Compared to other DC loadings, our results demonstrate the superior immunogenicity of fusion. The current technique of electrofusion is adequately developed for clinical use in cancer immunotherapy.  相似文献   

3.
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. In recent years, the outcome has been globally improved by current therapies, but it remains poor in patients with high, persistent residual disease following the first course of chemotherapy, prompting evaluation of the possible beneficial effects of immunotherapy protocols. In this study, we hypothesized that the disruption of two immunoregulatory pathways controlling the auto-reactive T cell response might synergize with dendritic cell-based immunotherapy of the disease, which is considered to be poorly immunogenic. In this study, we used TAL1xLMO1 leukemia cells adoptively transferred in mice, to generate murine leukemia with poorly immunogenic cells as a model for human T-ALL. Subsequently, these animals were treated with several different immunotherapeutic protocols. We compared the efficiency of a classical, dendritic cell-based immunotherapy (injection of dendritic cells loaded with tumor-derived antigenic products), to a combined treatment associating injection of antigen-loaded dendritic cells and disruption of the two immunoregulatory pathways: CD25+ suppressive T cells and cytotoxic T lymphocyte-associated antigens (CTLA-4). We show that this combined treatment resulted in cure, concomitantly with in vivo generation of immune memory, and TNF-alpha secretion. This study demonstrates that the disruption of these two immunoregulatory pathways synergized with immunostimulation by dendritic cells loaded with tumor-derived antigens, and paves the way for the testing of this combination in clinical trials.  相似文献   

4.
For cancer immunotherapy the loading of dendritic cells (DCs) with whole tumor cell lysate preparations represents a simple and promising approach for presentation of tumor-associated antigens (TAAs), avoiding the disadvantages of HLA-matching and definition of TAAs. The aim of this study was to investigate whether lysate-pulsed DCs efficiently cross-prime CD8+ T cells and induce a strong T(H)1 cell response, as compared to DCs pulsed with specific peptides (FLU M1 and Melan-A/Mart-1). As a model system breast carcinoma cell lysate from either MCF-7 or MDA-MB-231 cell lines (both HLA-A*0201+) expressing the TAA MUC1 were selected. Both cell lines expressed MUC1, the epithelial mucin, which is a large molecular weight O-glycosylated protein expressed in the majority of breast, ovarian, and other epithelial malignancies and is under evaluation as a target antigen in cancer immunotherapy. We developed a simple lysate preparation method to solubilize all cell proteins without degradation. For loading of monocyte-derived dendritic cells, 100 microgmL(-1) of breast carcinoma cell lysate was used, accompanied by an adjuvant consisting of tumor necrosis factor-alpha (TNF-alpha) and prostaglandin-E2. T cells were co-cultivated with lysate or peptide pulsed DCs and were restimulated weekly. Before cultivation, and after the 3rd stimulation, tetramer frequencies for the MUC1 epitopes M1.2 and F7 as well as for the FLU M1 and Melan-A/Mart-1 epitopes were determined. After stimulation with lysate, higher frequencies for M1.2-specific T cells were observed compared with the F7 epitope. Furthermore, we found expansion factors for M1.2-specific T cells that had been stimulated with MCF-7 lysate-pulsed DCs of up to 43-fold. The analysis of typical T(H)1/T(H)2 cytokines (IFN-gamma, TNF-alpha, IL-12p70, IL-2, IL-4, IL-5, and IL-10) revealed a strong T(H)1 response. These results provide evidence for a strong T(H)1 polarization and cross-priming of MUC1-specific CD8+ T cells and demonstrate the feasibility of using lysate-pulsed dendritic cells in breast cancer immunotherapy.  相似文献   

5.
Background The cellular regulatory protein p53 is overexpressed by almost 50% of all malignancies making it an attractive target for a vaccine approach to cancer. A number of immunotherapy approaches targeting p53 have been evaluated successfully in murine models, but translation of these preclinical findings to the clinic has been unsuccessful. Prior studies in our laboratory employing murine models demonstrated that a modified vaccinia virus Ankara (MVA) vaccine expressing murine p53 could stimulate p53 specific immunity. Systemic administration of the MVA vaccine was able to effect the rejection of established tumors. To better understand the immunologic mechanisms that underlie the vaccine function of human p53, we utilized a murine model in which the murine germ line copy of p53 was replaced with a modified human one. These mice, referred to as Hupki, were evaluated as a tolerant model to explore the capacity of MVA expressing human p53 to overcome tolerance and reject human p53-expressing tumors. Results MVAp53 immunization of Hupki mice resulted in the generation of p53-specific CD8+ T cells and the rejection of a highly aggressive murine mammary carcinoma cell line 4T1(H-2d) transfected with human p53 (4T1p53). An immunologic correlate of tumor protection was evaluated utilizing an overlapping peptide library spanning the full length of human p53. This reagent was also used in combination with MVAp53 to stimulate p53-specific CD8+ T cell responses in cancer patients. Conclusion These studies demonstrate the potential of MVAp53 to overcome tolerance to p53 for cancer immunotherapy.  相似文献   

6.
Based on the detection of spontaneous immune responses in cancer patients with cancer of different origin, Bcl-X(L) was recently described as a highly interesting tumor antigen recognized by CD8 positive cytotoxic T lymphocytes. To further characterize Bcl-X(L) as a tumor antigen we isolated and expanded Bcl-X(L) specific T cells from the peripheral blood of a breast cancer patient hosting a strong Bcl-X(L) specific T cell response. We describe that HLA-A2 restricted Bcl-X(L) specific T cell clones very efficiently lyse peptide pulsed T2 cells. Furthermore, tumor cell lines of different origin, i.e., breast cancer, colon cancer, and melanoma, are efficiently lysed in an HLA-dependent manner. Finally, ex vivo-isolated leukemia cells, but not non-malignant B and T cells are killed by Bcl-X(L) specific T cells. Our data underline Bcl-X(L) as an universal tumor antigen widely applicable in specific anticancer immunotherapy.  相似文献   

7.
Immunization with dendritic cells (DCs) transfected with genes encoding tumor-associated antigens (TAAs) is a highly promising approach to cancer immunotherapy. We have developed a system, using complexes of plasmid DNA expression constructs with the cationic peptide CL22, that transfects human monocyte-derived DCs much more efficiently than alternative nonviral agents. After CL22 transfection, DCs expressing antigens stimulated autologous T cells in vitro and elicited primary immune responses in syngeneic mice, in an antigen-specific manner. Injection of CL22-transfected DCs expressing a TAA, but not DCs pulsed with a TAA-derived peptide, protected mice from lethal challenge with tumor cells in an aggressive model of melanoma. The CL22 system is a fast and efficient alternative to viral vectors for engineering DCs for use in immunotherapy and research.  相似文献   

8.
MYCN is a potential target for cancer immunotherapy by virtue of its overexpression in numerous human malignancies and its functional role in tumour progression. Here we show limited expression of MYCN in normal human tissues indicating that anti-MYCN immune responses are unlikely to cross react with self tissues. An HLA-A2 restricted ten amino acid peptide epitope from MYCN, VILKKATEYV, was used to stimulate cytotoxic T cell lines from the peripheral blood of normal blood donors, and from a patient with MYCN amplified neuroblastoma. Strong and specific activity was seen against each MYCN overexpressing cell line and against autologous tumour cells. We generated two CTL clones capable of killing cells pulsed with as low as 0.5 nM of VIL peptide. Therefore strong and specific immune responses against MYCN expressing tumours are possible in patients with the most common HLA class 1 type in the Caucasian population.  相似文献   

9.
Secondary lymphoid tissue chemokine (SLC) is a CC chemokine that plays an important role in leukocytes homing to lymphoid tissues. The ability of SLC to co-localize both T cells and dendritic cells formed the rationale to evaluate its utility in cancer immunotherapy. The in vivo antitumor effect of murine SLC (mSLC) has been well documented, but little is known about that of human SLC (hSLC). To investigate the antitumor efficiency in vivo of hSLC, the hSLC gene was artificially synthesized and induced to express as a soluble form in Escherichia coli. After purification, the purity of the recombinant human SLC (rhSLC) protein was above 95% by SDS-PAGE analysis. The K(d) of rhSLC binding to peripheral blood lymphocytes (PBLs) was 0.2186 +/- 0.02675 microM as assessed by FACS, and the maximal chemotactic index of rhSLC was 9.49 at 100 nM as assessed by in vitro chemotaxis assay. Then genomic sequences of hSLC and mSLC, and of human CCR7 (hCCR7) and murine CCR7 (mCCR7), the receptor for SLC, were aligned. It was found that hSLC and mSLC share 70.72% identity and hCCR7 and mCCR7share 86.77% identity. Furthermore, we found that rhSLC could chemoattract murine peripheral blood mononuclear cells (PBMCs) in vitro. On the basis of these facts, immune competent mice inoculated with S180 sarcoma cells were chosen as an in vivo model. Intratumoral injections of rhSLC inhibited tumor growth and increased survival. These findings suggest that, despite its incapability to bind to either human or murine CXCR3, which is related to angiostasis, rhSLC can induce an antitumor response in vivo by another route. This report proves that rhSLC has a potent tumor-inhibition ability that makes it a promising candidate agent in cancer immunotherapy.  相似文献   

10.
S Fujimoto 《Human cell》1989,2(2):109-121
It is essential to investigate and elucidate the immune response especially T cell response to either syngeneic or autologous tumor for establishing a rational immunotherapy of cancer. We reported that major immune effector cells capable of inducing tumor regression are cytotoxic T lymphocytes (CTL). We found that there are at least two distinct CTL subsets directed to syngeneic tumor. One CTL subset which is selectively induced by syngeneic solid tumor is independent from CD4 positive helper T cells but requires a soluble factor (s) released from macrophage-like accessory cells designated killer T cell activating factor (KAF) in its induction and generation directed to the homologous tumor. The other CTL subset which is usually induced by syngeneic tumor of hematocytic origin is dependent on CD4 positive helper T cells in its induction. On the basis of our findings regarding the induction and activation mechanism of CTL to syngeneic tumors in the mouse, we have investigated the mechanisms of human CTL generation to autochthonous tumor in peripheral blood mononuclear cells of cancer patients. It was found that the nature of human CTL and its generation to autochthonous tumor are similar to those of murine CTL to syngeneic solid tumor. We are now establishing a rational cancer specific immunotherapy utilizing intravenous passive cell transfer of in vitro activated CTL to autochthonous tumor into an original cancer patient.  相似文献   

11.
TLR are evolutionarily conserved molecules that play a key role in the initiation of innate antimicrobial immune responses. Through their influence on dendritic cell maturation, these receptors are also thought to indirectly shape the adaptive immune response. However, no data are currently available regarding both TLR expression and function in human CD8+ T cell subsets. We report that a subpopulation of CD8+ T cells, i.e., effector, but neither naive nor central memory cells, constitutively expresses TLR3. Moreover, the ligation of the receptor by a specific agonist in TLR3-expressing CD8+ T cells increased IFN-gamma secretion induced by TCR-dependent and -independent stimulation, without affecting proliferation or specific cytolytic activity. These results thereby suggest that TLR3 ligands can not only indirectly influence the adaptive immune response through modulation of dendritic cell activation, but also directly increase IFN-gamma production by Ag-specific CD8+ T cells. Altogether, the present work might open new perspectives for the use of TLR ligands as adjuvants for immunotherapy.  相似文献   

12.
p53 mutations are frequently found in human cancers and are often associated with the overexpression of wild-type (WT) protein or peptide sequences, supporting the notion that WT p53 epitopes may serve as potential targets for tumor immunotherapy. We have developed a cytotoxic T lymphocyte (CTL)/p53 tumor-associated antigen (TAA) model, based on immune recognition of a WT p53 determinant. WT p53-peptide-specific, major histocompatibility complex (MHC) classI-restricted CTL were produced from immunocompetent C57BL/6 (H-2b) mice after immunization with a previously defined WT p53 peptide (p53(232-240)) Epitope-specific CTL were then employed to identify syngeneic tumor cell populations expressing that antigenic determinant. Two syngeneic tumor cell lines, MC38 colon carcinoma and MC57G fibrosarcoma, were demonstrated to express the endogenous WT p53(232-240) determinant naturally, as defined by CD8 + CTL recognition. Cold-target inhibition assays confirmed that CTL-mediated lysis was due to immune recognition of the p53(232-240) peptide epitope. The p53(232-240)-specific CTL line did not lyse syngeneic normal cells (i.e., mitogen-activated splenocytes) in the absence of exogenous peptide, suggesting that the WT-p53-specific CTL could distinguish between tumor cells expressing self-TAA and normal host cells. We have demonstrated, for the first time, that the adoptive transfer of WT-p53-specific CTL to mice with established pulmonary metastasis resulted in antitumor activity in vivo. The ability to generate MHC-class-I-restricted CD8- CTL lines specific for a non-mutated p53 determinant from normal, immunocompetent mice, which display antitumor activity both in vitro and in vivo (by adoptive transfer), may have implications for the immunotherapy of certain p53-expressing malignancies.  相似文献   

13.
Synthetic constructs were assembled as multiple Ag peptide systems containing repetitive sequences of Plasmodium falciparum and Plasmodium berghei, the causative agents of human and murine malaria respectively, and two universal human tetanus toxin T cell epitopes 830-843 and 947-967. These constructs were tested for antibody production in mice and for their capacity to stimulate human PBL and tetanus toxin-specific T cell clones. A high antibody titer can be obtained in mice when multiple Ag peptide systems are injected in various adjuvants or in PBS alone. Furthermore, all constructs can activate PBL from every donor tested. However, a variable response was obtained when different clones specific for the two tetanus toxin universal epitopes were used. These constructs may represent possible candidates for a malaria vaccine.  相似文献   

14.
Antigen-specific cancer immunotherapy is a promising strategy for improving cancer treatment. Recently, many tumor-associated antigens and their epitopes recognized by cytotoxic T lymphocytes (CTLs) have been identified. However, the density of endogenously presented antigen-derived peptides on tumor cells is generally sparse, resulting in the inability of antigen-specific CTLs to work effectively. We hypothesize that increasing the density of an antigen-derived peptide would enhance antigen-specific cancer immunotherapy. Here, we demonstrated that intratumoral peptide injection leads to additional peptide loading onto major histocompatibility complex class I molecules of tumor cells, enhancing tumor cell recognition by antigen-specific CTLs. In in vitro studies, human leukocyte antigen (HLA)-A*02:01-restricted glypican-3144–152 (FVGEFFTDV) and cytomegalovirus495–503 (NLVPMVATV) peptide-specific CTLs showed strong activity against all peptide-pulsed cell lines, regardless of whether the tumor cells expressed the antigen. In in vivo studies using immunodeficient mice, glypican-3144–152 and cytomegalovirus495–503 peptides injected into a solid mass were loaded onto HLA class I molecules of tumor cells. In a peptide vaccine model and an adoptive cell transfer model using C57BL/6 mice, intratumoral injection of ovalbumin257–264 peptide (SIINFEKL) was effective for tumor growth inhibition and survival against ovalbumin-negative tumors without adverse reactions. Moreover, we demonstrated an antigen-spreading effect that occurred after intratumoral peptide injection. Intratumoral peptide injection enhances tumor cell antigenicity and may be a useful option for improvement in antigen-specific cancer immunotherapy against solid tumors.  相似文献   

15.

Background

The enzyme indoleamine 2,3-dioxygenase (IDO) exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance to tumor antigens. In the present study, we tested the notion whether IDO itself may be subject to immune responses.

Methods and Findings

The presence of naturally occurring IDO-specific CD8 T cells in cancer patients was determined by MHC/peptide stainings as well as ELISPOT. Antigen specific cytotoxic T lymphocytes (CTL) from the peripheral blood of cancer patients were cloned and expanded. The functional capacity of the established CTL clones was examined by chrome release assays. The study unveiled spontaneous cytotoxic T-cell reactivity against IDO in peripheral blood as well as in the tumor microenvironment of different cancer patients. We demonstrate that these IDO reactive T cells are indeed peptide specific, cytotoxic effector cells. Hence, IDO reactive T cells are able to recognize and kill tumor cells including directly isolated AML blasts as well as IDO-expressing dendritic cells, i.e. one of the major immune suppressive cell populations.

Conclusion

IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro-inflammatory signals, IDO-based immunotherapy holds the promise to boost anti-cancer immunotherapy in general.  相似文献   

16.
Most types of cancer are difficult to eradicate, and some, like hepatocellular carcinoma, are almost always fatal. Among various interventions to improve the survival of patients with cancer, immunotherapy seems to hold some promises. However, it requires relevant animal models for preclinical development. In this study we report a new and relevant experimental model where liver tumors grow inside a nontumoral parenchyma of adult mice. This model is based on the intrasplenic injection in syngeneic recipient mice of hepatocytes from transgenic mice expressing SV40 large T oncogene specifically in the liver. Using this model where no apparent spontaneous cellular immune response was observed, immunization using a single injection of monoepitopic SV40 T Ag short peptide was sufficient to provoke liver tumor destruction, leading rapidly to complete remission. Tumor regression was associated with the induction of a long-lasting CD8+ T cell response, observed not only in the spleen but also, more importantly, in the tumoral liver. These results show the efficacy of peptide immunotherapy in the treatment of liver cancer.  相似文献   

17.
The Ig Id of a B cell lymphoma is a tumor-specific Ag, although as a self-Ag it is likely to be a weak immunogen. Provision of a foreign gene may enhance the immunogenicity of the idiotype. Viral vectors allow highly efficient transfer of genetic material and are themselves innately immunogenic. We have investigated the ability of recombinant adenoviral vectors, encoding the idiotypic gene with or without fusion to the human Fc region, to produce anti-idiotypic Ab- and T cell-mediated responses in a syngeneic BALB/c A20 murine lymphoma model. The idiotypic V(H) and V(L) sequences were assembled as a single chain variable fragment (scFv) and adenoviral vectors encoding the A20 scFv (Ad.A20) and A20 scFv linked to the Fc fragment of human IgG1 (Ad.A20hFc) were constructed. A single immunization of BALB/c mice with Ad.A20hFc but not Ad.A20 induced a specific anti-idiotypic Ab response. T cell lines generated from mice vaccinated with either vector displayed specific cytotoxicity, proliferation, and IFN-gamma release against a syngeneic dendritic cell line transduced using a retroviral vector to express the A20 scFv idiotype (XS52.A1.A20). Importantly, both T cell lines lysed the A20 lymphoma cells. An immunodominant H-2K(d)-restricted CD8(+) T cell peptide, DYWGQGTEL (A20[106-114]), was identified as a naturally occurring A20 scFv epitope. A single immunization with Ad.A20hFc but not Ad.A20 provided protection in >40% of animals challenged with a lethal dose of the A20 tumor line and was more effective, in this model, than a previously optimized plasmid vaccine.  相似文献   

18.
The partial success of tumor immunotherapy induced by checkpoint blockade, which is not antigen-specific, suggests that the immune system of some patients contain antigen receptors able to specifically identify tumor cells. Here we focused on T-cell receptor (TCR) repertoires associated with spontaneous breast cancer. We studied the alpha and beta chain CDR3 domains of TCR repertoires of CD4 T cells using deep sequencing of cell populations in mice and applied the results to published TCR sequence data obtained from human patients. We screened peripheral blood T cells obtained monthly from individual mice spontaneously developing breast tumors by 5 months. We then looked at identical TCR sequences in published human studies; we used TCGA data from tumors and healthy tissues of 1,256 breast cancer resections and from 4 focused studies including sequences from tumors, lymph nodes, blood and healthy tissues, and from single cell dataset of 3 breast cancer subjects. We now report that mice spontaneously developing breast cancer manifest shared, Public CDR3 regions in both their alpha and beta and that a significant number of women with early breast cancer manifest identical CDR3 sequences. These findings suggest that the development of breast cancer is associated, across species, with biomarker, exclusive TCR repertoires.  相似文献   

19.
Anti-idiotypic antibodies (anti-Id) to chimpanzee antibodies directed against a synthetic peptide corresponding to a native epitope associated with gp41 of human immunodeficiency virus (HIV) envelope glycoprotein were produced in rabbits. The peptide was analogous to amino acid sequences 735 to 752 from the human T cell leukemia virus-IIIB isolate of HIV. Characteristics of the anti-Id preparation included: 1) detection of a shared determinant present on a second chimpanzee and one of three rabbit antibody preparations directed against the synthetic peptide, 2) failure to recognize an idiotype (Id) in BALB/c mouse antisera to the peptide, and 3) partial inhibition of the homologous chimpanzee Id preparation from binding either peptide or a recombinant HIV gp160 preparation. Immunization of BALB/c mice with the anti-Id induced an antipeptide response which bound a recombinant gp160 preparation without subsequent peptide or gp160 exposure. The anti-gp160 containing sera from mice immunized with anti-Id were able to inhibit the Id-anti-Id reaction indicating that an Id-positive antibody response was induced. This Id is not normally expressed in the murine anti-gp 160 immune response to the synthetic peptide and suggests that this anti-Id may activate normally silent clones. This study indicates that Id networks may be operational during the immune response to HIV epitopes. Alternatively, anti-Id may be useful in altering the serologic characteristics of an antibody response to HIV and may offer potential for modulating the immune response in this viral infection.  相似文献   

20.
Peptide immunotherapy both activates and suppresses the T cell response against known peptide Ags. Although pretreatment with VP2(121-130) peptide inhibits the development of antiviral CTL specific for the immunodominant D(b):VP2(121-130) epitope expressed during acute Theiler's murine encephalomyelitis virus infection, i.v. injection of this same peptide or MHC tetramers containing the peptide during an ongoing antiviral CTL response results in a peptide-induced fatal syndrome (PIFS) within 48 h. Susceptibility to PIFS is dependent on peptide-specific CD8(+) T cells, varies among inbred strains of mice, and is not mediated by traditionally defined mechanisms of shock. Analyses using bone marrow chimeras and mutant mice demonstrate that susceptibility to PIFS is determined by the genotype of bone marrow-derived cells and requires the expression of perforin. Animals responding to peptide treatment with PIFS develop classical stress responses in the brain. These findings raise important considerations for the development of peptide therapies for active diseases to modify immune responses involving expanded populations of T cells. In summary, treatment with peptides or MHC-tetramers during a peptide-specific immune response can result in a fatal shock-like syndrome. Susceptibility to the syndrome is genetically determined, is mediated by CD8(+) T cells, and requires expression of perforin. These findings raise concerns about the use of peptides and MHC tetramers in therapeutic schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号