首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T-cell memory to Epstein-Barr virus (EBV) was first demonstrated through regression of EBV-induced B-cell transformation to lymphoblastoid cell lines (LCLs) in virus-infected peripheral blood mononuclear cell (PBMC) cultures. Here, using donors with virus-specific T-cell memory to well-defined CD4 and CD8 epitopes, we reexamine recent reports that the effector cells mediating regression are EBV latent antigen-specific CD4+ and not, as previously assumed, CD8+ T cells. In regressing cultures, we find that the reversal of CD23+ B-cell proliferation was always coincident with an expansion of latent epitope-specific CD8+, but not CD4+, T cells; furthermore CD8+ T-cell clones derived from regressing cultures were epitope specific and reproduced regression when cocultivated with EBV-infected autologous B cells. In cultures of CD4-depleted PBMCs, there was less efficient expansion of these epitope-specific CD8+ T cells and correspondingly weaker regression. The data are consistent with an effector role for epitope-specific CD8+ T cells in regression and an auxiliary role for CD4+ T cells in expanding the CD8 response. However, we also occasionally observed late regression in CD8-depleted PBMC cultures, though again without any detectable expansion of preexisting epitope-specific CD4+ T-cell memory. CD4+ T-cell clones derived from such cultures were LCL specific in gamma interferon release assays but did not recognize any known EBV latent cycle protein or derived peptide. A subset of these clones was also cytolytic and could block LCL outgrowth. These novel effectors, whose antigen specificity remains to be determined, may also play a role in limiting virus-induced B-cell proliferation in vitro and in vivo.  相似文献   

2.
Lin J  Zhi Y  Mays L  Wilson JM 《Journal of virology》2007,81(21):11840-11849
We recently discovered an expanded family of adeno-associated viruses (AAVs) that show promise as improved gene therapy vectors. In this study we evaluated the potential of vectors based on several of these novel AAVs as vaccine carriers for human immunodeficiency virus type 1 Gag. Studies with mice indicated that vectors based on AAV type 7 (AAV7), AAV8, and AAV9 demonstrate improved immunogenicity in terms of Gag CD8(+) T-cell and Gag antibody responses. The quality of these antigen-specific responses was evaluated in detail for AAV2/8 vectors and compared to results with an adenovirus vector expressing Gag (AdC7). AAV2/8 produced a vibrant CD8(+) T-cell effector response characterized by coexpression of gamma interferon and tumor necrosis factor alpha as well as in vivo cytolytic activity. No CD8(+) T-cell response generated by any of the AAVs was effectively boosted with AdC7, a result consistent with the finding of a relative lack of cells expressing interleukin-2 (IL-2) or a central memory phenotype at 3 months after the prime. The primary response to an AdC7 vaccine differed from that generated by AAVs in that the peak effector response evolved into populations of Gag-specific T cells expressing high levels of cytokines, including IL-2, and with effector memory and central memory phenotypes. A number of mechanisms could be considered to explain the aberrant activation of CD8(+) T cells by AAV, including insufficient inflammatory responses, CD4 help, and/or chronic antigen expression and T-cell exhaustion. Interestingly, the B-cell response to AAV-encoded Gag was quite vibrant and easily boosted with AdC7.  相似文献   

3.
Protective immunity against viral pathogens depends on the generation and maintenance of a small population of memory CD8(+) T cells. Successful memory cell generation begins with early interactions between na?ve T cell and dendritic cells (DCs) within the inflammatory milieu of the secondary lymphoid tissues. Recent insights into the role of different populations of DCs, and kinetics of antigen presentation, during viral infections have helped to understand how DCs can shape the immune response. Here, we review the recent progress that has been made towards defining how specific DC subsets drive effector CD8(+) T-cell expansion and differentiation into memory cells. Further, we endeavour to examine how the molecular signals imparted by DCs coordinate to generate protective CD8(+) T-cell immunity.  相似文献   

4.
Recent work shows that after stimulation with antigen, CD4+ and CD8+ T cells embark on a programme of proliferation that is closely linked with the acquisition of effector functions and leads ultimately to memory-cell formation. Here, we discuss the signals required for commitment to this programme of development and the factors that might influence its progression. Models of the pathways of effector and memory T-cell differentiation are discussed, and we highlight the implications of this new understanding for the optimization of vaccine strategies.  相似文献   

5.
Adenoviral vectors have shown a great potential for vaccine development due to their inherent ability to induce potent and protective CD8 T-cell responses. However, a critical issue regarding the use of these vectors is the existence of inhibitory immunity against the most commonly used Ad5 vector in a large part of the human population. We have recently developed an improved adenoviral vaccine vector system in which the vector expresses the transgene tethered to the MHC class II associated invariant chain (Ii). To further evaluate the potential of this system, the concept of pre-existing inhibitory immunity to adenoviral vectors was revisited to investigate whether the inhibition previously seen with the Ad5 vector also applied to the optimized vector system. We found this to be the case, and antibodies dominated as the mechanism underlying inhibitory vector immunity. However, presence of CD8 T cells directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD8 T-cell memory even in individuals with pre-existing vector immunity.  相似文献   

6.
Memory CD8+ T lymphocytes play a central role in protective immunity. In attempt to increase the frequencies of memory CD8+ T cells, repeated immunizations with viral vectors are regularly explored. Lentivectors have emerged as a powerful vaccine modality with relatively low pre-existing and anti-vector immunity, thus, thought to be ideal for boosting memory T cells. Nevertheless, we found that lentivectors elicited diminished secondary T-cell responses that did not exceed those obtained by priming. This was not due to the presence of anti-vector immunity, as limited secondary responses were also observed following heterologous prime-boost immunizations. By dissecting the mechanisms involved in this process, we demonstrate that lentivectors trigger exceptionally slow kinetics of antigen expression, while optimal activation of lentivector-induced T cells relays on durable expression of the antigen. These qualities hamper secondary responses, since lentivector-encoded antigen is rapidly cleared by primary cytotoxic T cells that limit its presentation by dendritic cells. Indeed, blocking antigen clearance by cytotoxic T cells via FTY720 treatment, fully restored antigen presentation. Taken together, while low antigen expression is expected during secondary immunization with any vaccine vector, our results reveal that the intrinsic delayed expression kinetics of lentiviral-encoded antigen, further dampens secondary CD8+ T-cell expansion.  相似文献   

7.
The role of B cells in T-cell priming is unclear, and the effects of B-cell depletion on immune responses to cancer vaccines are unknown. Although results from some mouse models suggest that B cells may inhibit induction of T cell-dependent immunity by competing with antigen-presenting cells for antigens, skewing T helper response toward a T helper 2 profile and/or inducing T-cell tolerance, results from others suggest that B cells are necessary for priming as well as generation of T-cell memory. We assessed immune responses to a well-characterized idiotype vaccine in individuals with severe B-cell depletion but normal T cells after CD20-specific antibody-based chemotherapy of mantle cell lymphoma in first remission. Humoral antigen- and tumor-specific responses were detectable but delayed, and they correlated with peripheral blood B-cell recovery. In contrast, vigorous CD4(+) and CD8(+) antitumor type I T-cell cytokine responses were induced in most individuals in the absence of circulating B cells. Analysis of relapsing tumors showed no mutations or change in expression of target antigen to explain escape from therapy. These results show that severe B-cell depletion does not impair T-cell priming in humans. Based on these results, it is justifiable to administer vaccines in the setting of B-cell depletion; however, vaccine boosts after B-cell recovery may be necessary for optimal humoral responses.  相似文献   

8.
The currently used smallpox vaccine is associated with a high incidence of adverse events, and there is a serious need for a safe and effective alternative vaccine. Here, we carried out a longitudinal evaluation of vaccinia virus-specific CD4 and CD8 T cells in smallpox-vaccinated individuals by using a highly sensitive intracellular cytokine staining assay. Our results demonstrate that, in addition to the CD8 response, the smallpox vaccinations raised a robust CD4 response with a Th1-dominant cytokine profile. These CD4 T cells were stable and exhibited only a twofold contraction between peak effector and memory phases compared with an approximate sevenfold contraction for CD8 cells. A significant proportion of vaccinated individuals lost detectable CD8 memory while maintaining CD4 memory. After a booster immunization, these individuals generated a robust CD8 response, which some of them rapidly lost. Thus, the current smallpox vaccine provides long-lasting CD4 help that may be critical for long-lived B-cell memory. We suggest that the provision of adequate CD4 help for CD8 and humoral effector functions will be critical to the success of the next generation of smallpox vaccines.  相似文献   

9.
To understand how memory CD4 T cells are generated we have re-examined the requirements for continuing antigen stimulation in the generation and persistence of this population. We find that specific antigen is only required for a short period during the activation of naive CD4 T cells and is not required for memory generation from activated CD4 T cells or for persistence of resting memory cells generated by transfer of activated CD4 to adoptive hosts. Moreover, transfer of activated CD4 T cells to class-II-deficient hosts, indicates that TcR-class II major histocompatibility interaction is also unnecessary for either the transition from activated CD4 T cell to resting memory cells or for persistence over an eight-week period. Thus the signals regulating generation and maintenance of memory are fundamentally different from those which regulate the expansion of effector CD4 T-cell populations which include antigen itself and the CD4 T-cell autocrine cytokines induced by antigen.  相似文献   

10.
A successful HIV vaccine in addition to induction of antibody responses should elicit effective T cell responses. Here we described possible strategies for rational design of T-cell vaccine capable to induce high levels of both CD4+ and CD8+ T- cell responses. We developed artificial HIV-1 polyepitope T-cell immunogens based on the conserved natural CD8+ and CD4+ T cell epitopes from different HIV-1 strains and restricted by the most frequent major human leukocyte antigen (HLA) alleles. Designed immunogens contain optimized core polyepitope sequence and additional “signal” sequences which increase epitope processing and presentation to CD8+ and CD4+ T-lymphocytes: N-terminal ubiquitin, N-terminal signal peptide and C-terminal tyrosine motif of LAMP-1 protein. As a result we engineered three T cell immunogens – TCI-N, TCI-N2, and TCI-N3, with different combinations of signal sequences. All designed immunogens were able to elicit HIV-specific CD4+ and CD8+ T cell responses following immunization. Attachment of either ubiquitin or ER-signal/LAMP-1 sequences increased both CD4+ and CD8+ mediated HIV-specific T cell responses in comparison with polyepitope immunogen without any additional signal sequences. Moreover, TCI-N3 polyepitope immunogen with ubiquitin generated highest magnitude of HIV-specific CD4+ and CD8+ T cell responses in our study. Obtained data suggests that attachment of signal sequences targeting polyepitope immunogens to either MHC class I or MHC class II presentation pathways may improve immunogenicity of T-cell vaccines. These results support the strategy of the rational T cell immunogen design and contribute to the development of effective HIV-1 vaccine.  相似文献   

11.
Respiratory syncytial virus (RSV) is a major cause of morbidity from respiratory infection in infants, young children and the elderly. No effective vaccine against RSV is currently available and studies of the natural history of RSV infection suggest repeated infections with antigenically related virus strains are common throughout an individual's lifetime. We have studied the CD8+ T-cell response during experimental murine RSV infection and found that RSV inhibits the expression of effector activity by activated RSV-specific CD8+ T cells infiltrating the lung parenchyma and the development of pulmonary CD8+ T-cell memory by interfering with TCR-mediated signaling. These data suggest a possible mechanism to explain the limited duration of protective immunity in RSV infection.  相似文献   

12.
13.
Efficient boosting of memory T-cell numbers to protective levels generally requires a relatively long interval between immunizations. Decreasing this interval could be crucial in biodefense and cancer immunotherapy, in which rapid protective responses are essential. Here, we show that vaccination with peptide-coated dendritic cells (DCs) generated CD8+ T cells with the phenotype and function of memory cells within 4-6 d. These early memory CD8+ T cells underwent vigorous secondary expansion in response to a variety of booster immunizations, leading to elevated numbers of effector and memory T cells and enhanced protective immunity. Coinjection of CpG oligodeoxynucleotides, potent inducers of inflammation that did not alter the duration of DC antigen display, prevented the rapid generation of memory T cells in wild-type mice but not in mice lacking the interferon (IFN)-gamma receptor. These data show that DC vaccination stimulates a pathway of accelerated generation of memory T cells, and suggest that events of inflammation, including the action of IFN-gamma on the responding T cells, control the rate of development of memory CD8+ T cells.  相似文献   

14.
Spontaneous CD4(+) T-cell responses to the tumor-specific antigen NY-ESO-1 (ESO) are frequently found in patients with epithelial ovarian cancer (EOC). If these responses are of effector or/and Treg type, however, has remained unclear. Here, we have used functional approaches together with recently developed MHC class II/ESO tetramers to assess the frequency, phenotype and function of ESO-specific cells in circulating lymphocytes from EOC patients. We found that circulating ESO-specific CD4(+) T cells in EOC patients with spontaneous immune responses to the antigen are prevalently T(H)1 type cells secreting IFN-γ but no IL-17 or IL-10 and are not suppressive. We detected tetramer(+) cells ex vivo, at an average frequency of 1:25,000 memory cells, that is, significantly lower than in patients immunized with an ESO vaccine. ESO tetramer(+) cells were mostly effector memory cells at advanced stages of differentiation and were not detected in circulating CD25(+)FOXP3(+)Treg. Thus, spontaneous CD4(+) T-cell responses to ESO in cancer patients are prevalently of T(H)1 type and not Treg. Their relatively low frequency and advanced differentiation stage, however, may limit their efficacy, that may be boosted by immunogenic ESO vaccines.  相似文献   

15.
Irradiated malaria sporozoites induce better protection than viable untreated sporozoites. We observed early differences between irradiated and viable untreated sporozoites in priming responses in vivo to a protective CD8 T-cell epitope, pb9, of the circumsporozoite protein of Plasmodium berghei. Sporozoites were processed for MHC class I presentation by dendritic cells (DC) to prime pb9-specific IFN-gamma-producing CD8 T cells. DC pulsed with untreated and irradiated sporozoites were similarly capable of priming central memory T-cell responses, detectable by the IFN-gamma cultured ELISPOT assay. However, irradiation significantly enhanced sporozoites' ability to prime effector T-cell responses detectable by the IFN-gammaex vivo ELISPOT assay. Irradiation also enhanced the ability of splenic APC to process and present sporozoites in order to re-stimulate pb9-specific polyclonal and clonal T-cell responses. Sporozoites did not stimulate T cells in the absence of APC. Over-irradiation decreased the sporozoites' T-cell stimulating capacity in vitro at high parasite doses, which may indicate that an optimal irradiation dose is necessary to induce protective immunity by sporozoite inoculation. The induction of sporozoite-specific CD8 T-cell responses without the need for liver stage infection identifies a potentially important mechanism in the development of pre-erythrocytic immunity.  相似文献   

16.
CD4 T-cell help is required for the induction of efficient CD8 T-cells responses and the generation of memory cells. Lack of CD4 T-cell help may contribute to an exhausted CD8 phenotype and viral persistence. Little is known about priming of CD4 T-cells by liver-derived antigen. We used TF-OVA mice expressing ovalbumin in hepatocytes to investigate CD4 T-cell priming by liver-derived antigen and the impact of CD4 T-cell help on CD8 T-cell function. Naïve and effector CD4 T-cells specific for ovalbumin were transferred into TF-OVA mice alone or together with naïve ovalbumin-specific CD8 T-cells. T-cell activation and function were analyzed. CD4 T-cells ignored antigen presented by liver antigen-presenting cells (APCs) in vitro and in vivo but were primed in the liver-draining lymph node and the spleen. No priming occurred in the absence of bone-marrow derived APCs capable of presenting ovalbumin in vivo. CD4 T-cells primed in TF-OVA mice displayed defective Th1-effector function and caused no liver damage. CD4 T-cells were not required for the induction of hepatitis by CD8 T-cells. Th1-effector but not naïve CD4 T-cells augmented the severity of liver injury caused by CD8 T-cells. Our data demonstrate that CD4 T-cells fail to respond to liver-derived antigen presented by liver APCs and develop defective effector function after priming in lymph nodes and spleen. The lack of CD4 T-cell help may be responsible for insufficient CD8 T-cell function against hepatic antigens.  相似文献   

17.
Vaccine strategies aimed at generating CD8(+) T cell memory responses are likely to show augmented efficacy against chronic challenges like tumor. The abundance in variety of memory CD8(+) T cells behooves development of vaccine strategies that generate distinct memory responses and evaluate them for tumor efficacy. In this study, we demonstrate the ability of a variety of rapamycin treatment regimens to regulate virus vaccination-induced CD8(+) T cell memory responses and tumor efficacy. Strikingly, a short course of high-dose, but not low-dose, rapamycin treatment transiently blocks viral vaccination-induced mammalian target of rapamycin activity in CD8(+) T cells favoring persistence and Ag-recall responses over type 1 effector maturation; however, prolonged high-dose rapamycin administration abrogated memory responses. Furthermore, a short course of high-dose rapamycin treatment generated CD8(+) T cell memory responses that were independent of IL-15 and IL-7 and were programmed early for sustenance and greater tumor efficacy. These results demonstrate the impact a regimen of rapamycin treatment has on vaccine-induced CD8(+) T cell responses and indicates that judicious application of rapamycin can augment vaccine efficacy for chronic challenges.  相似文献   

18.
CD8+ T cells against malaria liver stages represent a major protective immune mechanism against infection. Following induction in the peripheral lymph nodes by dendritic cells (DCs), these CD8+ T cells migrate to the liver and eliminate parasite infected hepatocytes. The processing and presentation of sporozoite antigen requires TAP mediated transport of major histocompatibility complex class I epitopes to the endoplasmic reticulum. Importantly, in DCs this process is also dependent on endosome-mediated cross presentation while this mechanism is not required for epitope presentation on hepatocytes. Protective CD8+ T cell responses are strongly dependent on the presence of CD4+ T cells and the capacity of sporozoite antigen to persist for a prolonged period of time. While human trials with subunit vaccines capable of inducing antibodies and CD4+ T cell responses have yielded encouraging results, an effective anti-malaria vaccine will likely require vaccine constructs designed to induce protective CD8+ T cells against malaria liver stages.  相似文献   

19.
T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+) T cells are important for the generation and maintenance of functional CD8(+) cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4(+) T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+)/CD8(+) T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+) and CD8(+) T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2) simultaneously in response to HIV-1 peptides. For CD4(+) T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2). The vaccine also generated long-lived central and effector memory CD4(+) T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+) T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+) T cells and antibody responses- elicited by other HIV immunogens.  相似文献   

20.
Adaptive immune responses in which CD8(+) T cells recognize pathogen-derived peptides in the context of major histocompatibility complex class I molecules play a major role in the host defense against infection with intracellular pathogens. Cells infected with intracellular bacteria such as Listeria monocytogenes, Salmonella enterica serovar Typhimurium, or Mycobacterium tuberculosis are directly lysed by cytotoxic CD8(+) T cells. For this reason, current vaccines for intracellular pathogens, such as subunit vaccines or viable bacterial vaccines, aim to generate robust cytotoxic T-cell responses. In order to investigate the capacity of a herpes simplex virus type 1 (HSV-1) vector to induce strong cytotoxic effector cell responses and protection from infection with intracellular pathogens, we developed a replication-deficient, recombinant HSV-1 (rHSV-1) vaccine. We demonstrate in side-by-side comparison with DNA vaccination that rHSV-1 vaccination induces very strong CD8(+) effector T-cell responses. While both vaccines provided protection from infection with L. monocytogenes at low, but lethal doses, only rHSV-1 vaccines could protect from higher infectious doses; HSV-1 induced potent memory cytotoxic T lymphocytes that, upon challenge by pathogens, efficiently protected the animals. Despite the stimulation of relatively low humoral and CD4-T-cell responses, rHSV-1 vectors are strong candidates for future vaccine strategies that confer efficient protection from subsequent infection with intracellular bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号