首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two lymphoid-specific proteins, RAG1 and RAG2, are required for the initiation of the V(D)J recombination in vitro. The V(D)J cleavage that is mediated by RAG proteins at the border between the coding and signal sequences results in the production of a hairpin at the coding end and a double-stranded break at the signal end. Two hairpin coding ends are re-opened, modified, and sealed; whereas, the signal ends are directly ligated. Here I report that only RAG1 can carry out a distinct endonucleolytic activity in vitro using an oligonucleotide substrate that is tethered by a short single-stranded DNA. The purified RAG1 protein alone formed a nick at the near position to the recombination signal sequence. This endonucleolytic activity was eliminated by immunoprecipitation using the RAG1-specific antibody, and required the 3'-hydroxy group. All of the RAG1 mutants that were incapable of the nick and hairpin formation in the V(D)J cleavage analysis also showed this new endonucleolytic activity. This suggests that the nicking activity that was observed might be functionally different from the nick formation in the V(D)J cleavage.  相似文献   

2.
Yu K  Taghva A  Ma Y  Lieber MR 《DNA Repair》2004,3(1):67-75
The complete cleavage phase of V(D)J recombination includes four phases: binding of the active RAG complexes to the 12- or 23-signals, nicking of the signals, synapsis of the two signals, and hairpin formation at both signals concurrently. We have done time courses for the complete cleavage phase of the V(D)J recombination reaction and quantitated the amount of active RAG enzyme. We have also formulated a kinetic model for the binding, nicking, synapsis, and hairpin formation phases. We have utilized free solution enzymatic measurements for the binding and nicking phases as we do mathematical simulations of the kinetic model. This permits iteration of rate constants for the synapsis and hairpin formation phases until the model fits the observed overall cleavage time course. This process yields a rate constant for the hairpin formation that is 0.004 min(-1), which corresponds to an average catalytic cycle time of 250 min. This value is exceedingly close to a measured value of this constant that relied on wash-out of an inhibitory cofactor. The agreement indicates that this is likely to be the rate of the hairpin step over a wide range of range of conditions and irrespective of the DNA sequence of the V, D or J coding end located adjacent to the signal. These findings indicate that, under optimal in vitro conditions, the core RAG proteins carry out nicking at a rate which is nearly 150-fold faster than hairpin formation. The physiologic implications of this and other kinetic inferences of these time courses are discussed.  相似文献   

3.
The beyond 12/23 (B12/23) rule ensures inclusion of a Dbeta gene segment in the assembled T-cell receptor (TCR) beta variable region exon and is manifest by a failure of direct Vbeta-to-Jbeta gene segment joining. The restriction is enforced during the DNA cleavage step of V(D)J recombination by the recombination-activating gene 1 and 2 (RAG1/2) proteins and the recombination signal sequences (RSSs) flanking the TCRbeta gene segments. Nothing is known about the step(s) at which DNA cleavage is defective or how TCRbeta locus sequences contribute to these defects. To address this, we examined the steps of DNA cleavage by the RAG proteins using TCRbeta locus V, D, and J RSS oligonucleotide substrates. The results demonstrate that the B12/23 rule is enforced through slow nicking of Jbeta substrates and to some extent through poor synapsis of Vbeta and Jbeta substrates. Nicking is controlled largely by the coding flank and, unexpectedly, the RSS spacer, while synapsis is controlled primarily by the RSS nonamer. The results demonstrate that different Jbeta substrates are crippled at different steps of cleavage by distinct combinations of defects in the various DNA elements and strongly suggest that the DNA nicking step of V(D)J recombination can be rate limiting in vivo.  相似文献   

4.
Cleavage of V(D)J recombination signals by purified RAG1 and RAG2 proteins permits the dissection of DNA structure and sequence requirements. The two recognition elements of a signal (nonamer and heptamer) are used differently, and their cooperation depends on correct helical phasing. The nonamer is most important for initial binding, while efficient nicking and hairpin formation require the heptamer sequence. Both nicking and hairpin formation are remarkably tolerant of variations in DNA structure. Certain flanking sequences inhibit hairpin formation, but this can be bypassed by base unpairing, and even a completely single-stranded signal sequence is well utilized. We suggest that DNA unpairing around the signal-coding border is essential for the initiation of V(D)J combination.  相似文献   

5.
A central unanswered question concerning the initial phases of V(D)J recombination has been at which step the 12/23 rule applies. This rule, which governs which variable (V), diversity (D), and joining (J) segments are able to pair during recombination, could operate at the level of signal sequence synapsis after RAG-HMG1 complex binding, signal nicking, or signal hairpin formation. It has also been unclear whether additional proteins are required to achieve adherence to the 12/23 rule. We developed a novel system for the detailed biochemical analysis of the 12/23 rule by using an oligonucleotide-based substrate that can include two signals. Under physiologic conditions, we found that the complex of RAG1, RAG2, and HMG1 can successfully recapitulate the 12/23 rule with the same specificity as that seen intracellularly and in crude extracts. The cleavage complex can bind and nick 12×12 and 23×23 substrates as well as 12×23 substrates. However, hairpin formation occurs at both of the signals only on 12×23 substrates. Moreover, under physiologic conditions, the presence of a partner 23-bp spacer suppresses single-site hairpin formation at a 12-bp spacer and vice versa. Hence, this study illustrates that synapsis suppresses single-site reactions, thereby explaining the high physiologic ratio of paired versus unpaired V(D)J recombination events in lymphoid cells.  相似文献   

6.
The first step in DNA cleavage at V(D)J recombination signals by RAG1 and RAG2 is creation of a nick at the heptamer/coding flank border. Under proper conditions in vitro the second step, hairpin formation, requires two signals with spacers of 12 and 23 bp, a restriction referred to as the 12/23 rule. Under these conditions hairpin formation occurs at the two signals at or near the same time. In contrast, we find that under the same conditions nicking occurs at isolated signals and hence is not subject to the 12/23 rule. With two signals the nicking events are not concerted and the signal with a 12 bp spacer is usually nicked first. However, the extent and rate of nicking at a given signal are diminished by mutations of the other signal. The appearance of DNA nicked at both signals is stimulated by more than an order of magnitude by the ability of the signals to synapse, indicating that synapsis accelerates nicking and often precedes it. These observations allow formulation of a more complete model of catalysis of DNA cleavage and how the 12/23 rule is enforced.  相似文献   

7.
In V(D)J recombination, the RAG1 and RAG2 protein complex cleaves the recombination signal sequences (RSSs), generating a hairpin structure at the coding end. The cleavage occurs only between two RSSs with different spacer lengths of 12 and 23 bp. Here we report that in the synaptic complex, recombination-activating gene (RAG) proteins interact with the 7-mer and unstack the adjacent base in the coding region. We generated a RAG1 mutant that exhibits reduced RAG-7-mer interaction, unstacking of the coding base, and hairpin formation. Mutation of the 23-RSS at the first position of the 7-mer, which has been reported to impair the cleavage of the partner 12-RSS, demonstrated phenotypes similar to those of the RAG1 mutant; the RAG interaction and base unstacking in the partner 12-RSS are reduced. We propose that the RAG-7-mer interaction is a critical step for coding DNA distortion and hairpin formation in the context of the 12/23 rule.  相似文献   

8.
RAG-1 and RAG-2 initiate V(D)J recombination by cleaving DNA at recombination signal sequences through sequential nicking and transesterification reactions to yield blunt signal ends and coding ends terminating in a DNA hairpin structure. Ubiquitous DNA repair factors then mediate the rejoining of broken DNA. V(D)J recombination adheres to the 12/23 rule, which limits rearrangement to signal sequences bearing different lengths of DNA (12 or 23 base pairs) between the conserved heptamer and nonamer sequences to which the RAG proteins bind. Both RAG proteins have been subjected to extensive mutagenesis, revealing residues required for one or both cleavage steps or involved in the DNA end-joining process. Gain-of-function RAG mutants remain unidentified. Here, we report a novel RAG-1 mutation, E649A, that supports elevated cleavage activity in vitro by preferentially enhancing hairpin formation. DNA binding activity and the catalysis of other DNA strand transfer reactions, such as transposition, are not substantially affected by the RAG-1 mutation. However, 12/23-regulated synapsis does not strongly stimulate the cleavage activity of a RAG complex containing E649A RAG-1, unlike its wild-type counterpart. Interestingly, wild-type and E649A RAG-1 support similar levels of cleavage and recombination of plasmid substrates containing a 12/23 pair of signal sequences in cell culture; however, E649A RAG-1 supports about threefold more cleavage and recombination than wild-type RAG-1 on 12/12 plasmid substrates. These data suggest that the E649A RAG-1 mutation may interfere with the RAG proteins' ability to sense 12/23-regulated synapsis.  相似文献   

9.
In all of the transposition reactions that have been characterized thus far, synapsis of two transposon ends is required before any catalytic steps (strand nicking or strand transfer) occur. In V(D)J recombination, there have been inconclusive data concerning the role of synapsis in nicking. Synapsis between two 12-substrates or between two 23-substrates has not been ruled out in any studies thus far. Here we provide the first direct tests of this issue. We find that immobilization of signals does not affect their nicking, even though hairpinning is affected in a manner reflecting its known synaptic requirement. We also find that nicking is kinetically a unireactant enzyme-catalyzed reaction. Time courses are no different between nicking seen for a 12-substrate alone and a reaction involving both a 12- and a 23-substrate. Hence, synapsis is neither a requirement nor an effector of the rate of nicking. These results establish V(D)J recombination as the first example of a DNA transposition-type reaction in which catalytic steps begin prior to synapsis, and the results have direct implications for the order of the steps in V(D)J recombination, for the contribution of V(D)J recombination nicks to genomic instability, and for the diversification of the immune repertoire.  相似文献   

10.
V(D)J recombination proceeds in two stages. Precise cleavage at the border of the conserved recombination signal sequences (RSSs) and the coding ends results in flush double-stranded signal ends and coding ends terminating in hairpins. In the second stage, the signal and coding ends are processed into signal and coding joints. Coding ends containing certain nucleotide homopolymers affect the efficiency of V(D)J recombination. In this study, we have tested the effect of small changes in coding-end nucleotide composition on the frequency of coding- and signal joint formation. Furthermore, we have determined the sequences of coding joints resulting from recombination of coding ends with different compositions. We found that the presence of two T nucleotides 5' of both RSSs, but not a single T, reduces the frequency of signal joint formation, i.e., interferes with the cleavage stage of V(D)J recombination. However, coding-joint processing is sensitive even to a single T. Both the sequence of the coding ends and the particular RSS (12-mer or 23-mer) with which the coding end is associated affect the final composition of the coding joints. Thus, the presence of P nucleotides, the conservation of one undeleted coding end, the formation of joints without any deletions, and the template-dependent insertion of nucleotides are strongly influenced by the coding-end nucleotide composition and/or RSS association. The implications of these results with respect to the processing of coding ends are discussed.  相似文献   

11.
The lymphoid cell-specific proteins RAG1 and RAG2 initiate V(D)J recombination by cleaving DNA adjacent to recombination signals, generating blunt signal ends and covalently sealed, hairpin coding ends. A critical next step in the reaction is opening of the hairpins, but the factor(s) responsible has not been identified and had been thought to be a ubiquitous component(s) of the DNA repair machinery. Here we demonstrate that RAG1 and RAG2 possess an intrinsic single-stranded nuclease activity capable of nicking hairpin coding ends at or near the hairpin tip. In Mn2+, a synthetic hairpin is nicked 5 nucleotides (nt) 5' of the hairpin tip, with more distant sites of nicking suppressed by HMG2. In Mg2+, hairpins generated by V(D)J cleavage are nicked whereas synthetic hairpins are not. Cleavage-generated hairpins are nicked at the tip and predominantly 1 to 2 nt 5' of the tip. RAG1 and RAG2 may therefore be responsible for initiating the processing of coding ends and for the generation of P nucleotides during V(D)J recombination.  相似文献   

12.
V(D)J recombination is one of the most complex DNA transactions in biology. The RAG complex makes double-stranded breaks adjacent to signal sequences and creates hairpin coding ends. Here, we find that the kinase activity of the Artemis:DNA-PKcs complex can be activated by hairpin DNA ends in cis, thereby allowing the hairpins to be nicked and then to undergo processing and joining by nonhomologous DNA end joining. Based on these insights, we have reconstituted many aspects of the antigen receptor diversification of V(D)J recombination by using 13 highly purified polypeptides, thereby permitting variable domain exon assembly by using this fully defined system in accord with the 12/23 rule for this process. The features of the recombination sites created by this system include all of the features observed in vivo (nucleolytic resection, P nucleotides, and N nucleotide addition), indicating that most, if not all, of the end modification enzymes have been identified.  相似文献   

13.
Targeted transposition by the V(D)J recombinase   总被引:6,自引:0,他引:6       下载免费PDF全文
Cleavage by the V(D)J recombinase at a pair of recombination signal sequences creates two coding ends and two signal ends. The RAG proteins can integrate these signal ends, without sequence specificity, into an unrelated target DNA molecule. Here we demonstrate that such transposition events are greatly stimulated by--and specifically targeted to--hairpins and other distorted DNA structures. The mechanism of target selection by the RAG proteins thus appears to involve recognition of distorted DNA. These data also suggest a novel mechanism for the formation of alternative recombination products termed hybrid joints, in which a signal end is joined to a hairpin coding end. We suggest that hybrid joints may arise by transposition in vivo and propose a new model to account for some recurrent chromosome translocations found in human lymphomas. According to this model, transposition can join antigen receptor loci to partner sites that lack recombination signal sequence elements but bear particular structural features. The RAG proteins are capable of mediating all necessary breakage and joining events on both partner chromosomes; thus, the V(D)J recombinase may be far more culpable for oncogenic translocations than has been suspected.  相似文献   

14.
The RAG proteins cleave at V(D)J recombination signal sequences then form a postcleavage complex with the broken ends. The role of this complex in end processing and joining, if any, is undefined. We have identified two RAG1 mutants proficient for DNA cleavage but severely defective for coding and signal joint formation, providing direct evidence that RAG1 is critical for joining in vivo and strongly suggesting that the postcleavage complex is important in end joining. We have also identified a RAG1 mutant that is severely defective for both hairpin opening in vitro and coding joint formation in vivo. These data suggest that the hairpin opening activity of the RAG proteins plays an important physiological role in V(D)J recombination.  相似文献   

15.
The V(D)J recombinase recognizes a pair of immunoglobulin or T-cell receptor gene segments flanked by recombination signal sequences and introduces double-strand breaks, generating two signal ends and two coding ends. Broken coding ends were initially identified as covalently closed hairpin DNA molecules. Before recombination, however, the hairpins must be opened and the ends must be modified by nuclease digestion and N-region addition. We have now analyzed nonhairpin coding ends associated with various immunoglobulin gene segments in cells undergoing V(D)J recombination. We found that these broken DNA ends have different nonrandom 5′-strand deletions which were characteristic for each locus examined. These deletions correlate well with the sequence characteristics of coding joints involving these gene segments. In addition, unlike broken signal ends, these nonhairpin coding-end V(D)J recombination reaction intermediates have 3′ overhanging ends. We discuss the implications of these results for models of how sequence modifications occur during coding-joint formation.  相似文献   

16.
Initiation of V(D)J recombination results in broken DNA molecules with blunt recombination signal ends and covalently sealed (hairpin) coding ends. In SCID mice, coding joint formation is severely impaired and hairpin coding ends accumulate as a result of a deficiency in the catalytic subunit of DNA-dependent protein kinase, an enzyme involved in the repair of DNA double-strand breaks. In this study, we report that not all SCID coding ends are hairpinned. We have detected open Jdelta1 and Ddelta2 coding ends at the TCRdelta locus in SCID thymocytes. Approximately 25% of 5'Ddelta2 coding ends were found to be open. Large deletions and abnormally long P nucleotide additions typical of SCID Ddelta2-Jdelta1 coding joints were not observed. Most Jdelta1 and Ddelta2 coding ends exhibited 3' overhangs, but at least 20% had unique 5' overhangs not previously detected in vivo. We suggest that the SCID DNA-dependent protein kinase deficiency not only reduces the efficiency of hairpin opening, but also may affect the specificity of hairpin nicking, as well as the efficiency of joining open coding ends.  相似文献   

17.
In V(D)J joining of antigen receptor genes, two recombination signal sequences (RSSs), 12- and 23-RSSs, form a complex with the protein products of recombination activating genes, RAG1 and RAG2. DNaseI footprinting demonstrates that the interaction of RAG proteins with substrate RSS DNA is not just limited to the signal region but involves the coding sequence as well. Joining mutants of RAG1 and RAG2 demonstrate impaired interactions with the coding region in both pre- and postcleavage type complexes. A possible role of this RAG coding region interaction is discussed in the context of V(D)J recombination.  相似文献   

18.
V(D)J recombination is a site-specific gene rearrangement process that contributes to the diversity of antigen receptor repertoires. Two lymphoid-specific proteins, RAG1 and RAG2, initiate this process at two recombination signal sequences. Due to the recent development of an in vitro assay for V(D)J cleavage, the mechanism of cleavage has been elucidated clearly. The RAG complex recognizes a recombination signal sequence, makes a nick at the border between signal and coding sequence, and carries out a transesterification reaction, resulting in the production of a hairpin structure at the coding sequence and DNA double-strand breaks at the signal ends. RAG1 possesses the active site of the V(D)J recombinase although RAG2 is essential for signal binding and cleavage. After DNA cleavage by the RAG complex, the broken DNA ends are rejoined by the coordinated action of DNA double-strand break repair proteins as well as the RAG complex. The junctional variability resulting from imprecise joining of the coding sequences contributes additional diversity to the antigen receptors.  相似文献   

19.
Lymphoid cells from scid mice initiate V(D)J recombination normally but have a severely reduced ability to join coding segments. Thymocytes from scid mice contain broken DNA molecules at the TCR delta locus that have coding ends, as well as molecules with signal ends, whereas in normal mice we previously detected only signal ends. Remarkably, these coding (but not signal) ends are sealed into hairpin structures. The formation of hairpins at coding ends may be a universal, early step in V(D)J recombination; this would provide a simple explanation for the origin of P nucleotides in coding joints. These findings may shed light on the mechanism of cleavage and suggest a possible role for the scid factor.  相似文献   

20.
The recombination activating gene (RAG) 1 and 2 proteins are required for initiation of V(D)J recombination in vivo and have been shown to be sufficient to introduce DNA double-strand breaks at recombination signal sequences (RSSs) in a cell-free assay in vitro. RSSs consist of a highly conserved palindromic heptamer that is separated from a slightly less conserved A/T-rich nonamer by either a 12 or 23 bp spacer of random sequence. Despite the high sequence specificity of RAG-mediated cleavage at RSSs, direct binding of the RAG proteins to these sequences has been difficult to demonstrate by standard methods. Even when this can be demonstrated, questions about the order of events for an individual RAG-RSS complex will require methods that monitor aspects of the complex during transitions from one step of the reaction to the next. Here we have used template-independent DNA polymerase terminal deoxynucleotidyl transferase (TdT) in order to assess occupancy of the reaction intermediates by the RAG complex during the reaction. In addition, this approach allows analysis of the accessibility of end products of a RAG-catalyzed cleavage reaction for N nucleotide addition. The results indicate that RAG proteins form a long-lived complex with the RSS once the initial nick is generated, because the 3'-OH group at the nick remains obstructed for TdT-catalyzed N nucleotide addition. In contrast, the 3'-OH group generated at the signal end after completion of the cleavage reaction can be efficiently tailed by TdT, suggesting that the RAG proteins disassemble from the signal end after DNA double-strand cleavage has been completed. Therefore, a single RAG complex maintains occupancy from the first step (nick formation) to the second step (cleavage). In addition, the results suggest that N region diversity at V(D)J junctions within rearranged immunoglobulin and T cell receptor gene loci can only be introduced after the generation of RAG-catalyzed DNA double-strand breaks, i.e. during the DNA end joining phase of the V(D)J recombination reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号