首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
32P-labeled glucose 6-phosphate and phosphoenolpyruvate were injected into oocytes, fertilized eggs, and early embryos of Xenopus laevis, and the 32P label was followed into glycolytic enzymes and acid-soluble metabolites. The kinetics of labeling of phosphoglucomutase and phosphoglyceromutase and the formation of specific metabolites were used to measure carbon flux through glycolytic intermediates in these cells. In full-grown stage VI oocytes, fertilized eggs, and cells of cleaving embryos, carbon metabolism is in the glycogenic direction. Glycolytic intermediates injected into these cells were metabolized into UDP-glucose and then presumably into glycogen. Carbon flow between phosphoenolpyruvate and glucose 6-phosphate does not utilize fructose 1,6-bisphosphatase; rather, it may depend largely on enzymes of the pentose phosphate pathway. Maturation and fertilization of the oocyte did not result in a change in the qualitative pattern of metabolites formed. Pyruvate kinase, although abundant in oocytes and embryos, is essentially inactive in these cells. Pyruvate kinase also appears to be inactive in small previtellogenic stage II oocytes; however, in these cells injected glycolytic intermediates were not metabolized to UDP-glucose.  相似文献   

2.
32P-labeled glucose 6-phosphate, [32P]phosphoenolpyruvate, and [gamma-32P]ATP were injected into oocytes and fertilized eggs of Xenopus laevis, and the incorporation of the 32P label was followed into phospholipids. Several classes of phospholipids incorporated 32P label from the injected glycolytic intermediates, including lysophosphatidic acid, phosphatidic acid, phosphatidylinositol, and phosphatidylinositol phosphates, inferring de novo synthesis of these lipids from dihydroxyacetone phosphate or glycerol 3-phosphate. Injection of [gamma-32P]ATP into oocytes and fertilized eggs led to labeling of phosphatidylinositol phosphate and phosphatidylinositol bisphosphate, indicating an active phosphatidylinositol cycle in resting oocytes and fertilized eggs. Maturation and fertilization of the oocyte led to a qualitative change in phosphatidylinositol metabolism, increased labeling of phosphatidylinositol phosphate compared to phosphatidylinositol bisphosphate (either from glycerol 3-phosphate or from ATP). This change occurs late in the maturation process, and the new pattern of phosphatidylinositol metabolism is maintained during the rapid cleavage stages of early embryogenesis.  相似文献   

3.
Lipid metabolic pathways operating in amphibian full-grown oocytes   总被引:1,自引:0,他引:1  
The utilization of (2-3H)-glycerol in lipid biosynthesis was analyzed in Bufo arenarum and Xenopus laevis full-grown oocytes. The precursor was more actively incorporated in Xenopus laevis oocytes. Neutral glycerides were the lipids displaying the highest levels of radioactivity followed by phosphatidylcholine and phosphatidylethanolamine. After reincubation of prelabeled oocytes in a saline buffer solution, a net fall in labeled phosphatidic acid concomitant with an increase in phosphatidylcholine were detected. The present findings establish that glycerolipid biosynthesis is operative in full-grown oocytes. In addition, Xenopus laevis oocytes seem to be metabolically more active.  相似文献   

4.
rRNA accumulation and protein synthetic patterns in growing mouse oocytes   总被引:2,自引:0,他引:2  
The rRNA contents of mouse primordial oocytes, three stages of growing oocytes, full-grown oocytes, and ovulated ova have been measured by hybridization of RNA samples to excess 3H-DNA complementary to rRNA. Since it was known from previous work that rRNA is stable, the results when plotted against days of oocyte growth indicated that rRNA was synthesized at a constant rate over the first 9 days of growth and about 1.5 times faster in the last 5 days. The maximum value of 0.3 ng per oocyte was attained by about 14 days of growth in oocytes 59 micrometers in diameter, well below the maximum diameter of 77 micrometers for full-grown oocytes. The stability of proteins synthesized in mid-growth phase oocytes was measured by labeling for 5 h with 35S-methionine and then following the decline of incorporated label during a 48h chase; 40% of the label decayed with a half-life of 11 h. and 60% was apparently stable. The two-dimensional electrophoretic patterns of labeled proteins synthesized by growing and full-grown oocytes were compared. The principal change was the appearance or great increase in intensity of several spots in full-grown oocytes as compared to growing oocytes. Egg proteins separated on a two-dimensional gel were visualized by silver staining. The cytoskeletal proteins actin, tubulin, and putative intermediate filament protein, as well as putative lactate dehydrogenase, were synthesized in growing and full-grown oocytes, and accumulated to form a significant portion of bulk egg protein.  相似文献   

5.
Xenopus laevis oocytes undergo maturation when they are injected with large quantities of crude ribosomes from various origins: X laevis full-grown or matured oocytes, Xenopus ovaries and embryos, Xenopus liver or mouse liver. All have the same efficiency, whatever their origin: they include 50-90% maturation in the injected oocytes at about the same speed as progesterone treatment. The ribosomal preparations are inactive wen injected into recipient oocytes pretreated with cholera toxin or cycloheximide. After dissociation with the high salt extract, but not with the subunits. Hypotheses concernning the mode action of this ribosomal extract are disussed.  相似文献   

6.
The inhibition of enzymes by beryllium   总被引:4,自引:4,他引:0  
1. The action of beryllium on the following enzymes has been examined: alkaline phosphatase (Escherichia coli and kidney), acid phosphatase, phosphoprotein phosphatase, apyrase (potato), adenosine triphosphatase (liver nuclei, liver mitochondria, brain microsomes), glucose 6-phosphatase, polysaccharide phosphorylases a and b, phosphoglucomutase, hexokinase, phosphoglyceromutase, ribonuclease, A-esterase (rabbit serum), cholinesterase (horse serum), chymotrypsin. Alkaline phosphatase and phosphoglucomutase are inhibited by 1mum-beryllium sulphate whereas the other enzymes are largely unaffected by 1mm-beryllium sulphate. 2. Possible mechanisms for the inhibition of phosphoglucomutase and alkaline phosphatase are discussed.  相似文献   

7.
1. The aim of this work was to discover the location of the enzymes that convert phosphoenolpyruvate to fructose 6-phosphate during gluconeogenesis in fatty seeds. Cotyledons of 5-day-old dark-grown seedlings of marrow (Cucurbita pepo) were used as experimental material. 2. Cotyledons were separated into palisade and mesophyll tissue. Extracts of the two tissues had comparable activities of gluconeogenic enzymes. 3. Extracts of cotyledons were fractionated by density gradient centrifugation to yeild mitochondria and glyoxysomes, and by gel filtration to yield proplastids. The isolated organelles retained their characteristic ultrastructure and appreciable amounts of marker enzymes. The proportions of the total activities of phosphoglyceromutase and fructose-1, 6-diphosphatase recovered in the mitochondrial and glyoxysomal preparations were insignificant. The same was true for the activities of phosphoglyceromutase and phosphopyruvate hydratase found in the proplastid preparations. 4. Extracts of a number of other gluconeigenic plant tissues were centrifuged at 2500 times g to yield particulate preparations. None of these preparations contained a significant proportion of the total activity of phosphoglyceromutase. 5. It is suggested that gluconeogenesis from phosphoenolpyruvate in plants occurs in the cytoplasm.  相似文献   

8.
In vitro, 4-amino-6-trichloroethenyl-1,3-benzenedisulfonamide, a potent fasciolicide, causes a potent concentration-dependent inhibition of glucose uptake by mature Fasciola hepatica. In F. hepatica treated with the disulfonamide and then fed [U-14C]glucose, there was a 60% inhibition of glucose utilization and a corresponding inhibition of acetate and propionate formation. Treated fluke parasites possessed much lower levels of adenosine triphosphate, phosphoenolpyruvate, glucose 6-phosphate, and fructose 6-phosphate than untreated parasites and contained higher levels of glycerol and the free sugars fructose and mannose. Direct measurement of the effect of the disulfonamide on the glycolytic enzymes of F. hepatica demonstrated that 3-phosphoglycerate kinase (EC 2.7.2.3) and phosphoglyceromutase (EC 2.7.5.3) were inhibited. It is therefore suggested that the fasciolicidal activity of 4-amino-6-trichloroethenyl-1, 3-benzenedisulfonamide is due to inhibition of the enzymes 3-phosphoglycerate kinase and phosphoglyceromutase which effectively blocks the Embden-Myerhof glycolytic pathway.  相似文献   

9.
A method involving labeling to isotopic steady state and modeling of the tricarboxylic acid cycle has been used to identify the respiratory substrates in lettuce embryos during the early steps of germination. We have compared the specific radioactivities of aspartate and glutamate and of glutamate C-1 and C-5 after labeling with different substrates. Labeling with [U-14C]acetate and 14CO2 was used to verify the validity of the model for this study; the relative labeling of aspartate and glutamate was that expected from the normal operation of the tricarboxylic acid cycle. After labeling with 14CO2, the label distribution in the glutamate molecule (95% of the label at glutamate C-1) was consistent with an input of carbon via the phosphoenolpyruvate carboxylase reaction, and the relative specific radioactivities of aspartate and glutamate permitted the quantification of the apparent rate of the fumarase reaction. CO2 and intermediates related to the tricarboxylic acid cycle were labeled with [U-14C]acetate, [1-14C] hexanoate, or [U-14C]palmitic acid. The ratios of specific radioactivities of asparate to glutamate and of glutamate C-1 to C-5 indicated that the fatty acids were degraded to acetyl units, suggesting the operation of beta-oxidation, and that the acety-CoA was incorporated directly into citrate. Short-term labeling with [1-14C]hexanoate showed that citrate and glutamate were labeled earlier than malate and aspartate, showing that this fatty acid was metabolized through the tricarboxylic acid cycle rather than the glyoxylate cycle. This was in agreement with the flux into gluconeogenesis compared to efflux as respiratory CO2. The fraction of labeled substrate incorporated into carbohydrates was only about 5% of that converted to CO2; the carbon flux into gluconeogenesis was determined after labeling with 14CO2 and [1-14C]hexanoate from the specific radioactivity of aspartate C-1 and the amount of label incorporated into the carbohydrate fraction. It was only 7.4% of the efflux of respiratory CO2. The labeling of alanine indicates a low activity of either a malic enzyme or the sequence phosphoenolpyruvate carboxykinase/pyruvate kinase. After labeling with [U-14C]glucose, the ratios of specific radioactivities indicated that the labeled carbohydrates contributed less than 10% to the flux of acetyl-CoA. The model indicated that the glycolytic flux is partitioned one-third to pyruvate and two-thirds to oxalacetate and is therefore mainly anaplerotic. The possible role of fatty acids as the main source of acetyl-CoA for respiration is discussed.  相似文献   

10.
1. The kinetic characteristics of pyruvate kinase isozymes from oocytes, embryos, liver and skeletal muscle from the clawed frog Xenopus laevis were measured in cell extracts. 2. The muscle and liver isozymes display Michaelis-Menten kinetics with Kms for phosphoenolpyruvate (PEP) of 0.02 and 0.05 mM, respectively. 3. Pyruvate kinase from oocytes and embryos displays cooperative kinetics for PEP with a Km of about 0.15 mM; the kinetics become hyperbolic and the Km for PEP is reduced to 0.05 mM in the presence of microM concentrations of fructose-1,6-bisphosphate. 4. These data serve to characterize pyruvate kinase activity in oocytes and embryos and the kinetics are compared to mammalian pyruvate kinase isozymes.  相似文献   

11.
12.
Steady state metabolic flux analysis using (13)C labeled substrates is of growing importance in plant physiology and metabolic engineering. The quality of the flux estimates in (13)C metabolic flux analysis depend on the: (i) network structure; (ii) flux values; (iii) design of the labeling substrate; and (iv) label measurements performed. Whereas the first two parameters are facts of nature, the latter two are to some extent controlled by the experimenter, yet they have received little attention in most plant studies. Using the metabolic flux map of developing Brassica napus (Rapeseed) embryos, this study explores the value of optimal substrate label designs obtained with different statistical criteria and addresses the applicability of different optimal designs to biological questions. The results demonstrate the value of optimizing the choice of labeled substrates and show that substrate combinations commonly used in bacterial studies can be far from optimal for mapping fluxes in plant systems. The value of performing additional experiments and the inclusion of measurements is also evaluated.  相似文献   

13.
During the course of maturation of Xenopus laevis oocyte a burst of phosphorylation occurs around germinal vesicle breakdown. At the same time a relative drop in a unique phosphoprotein (protein I; mot wt ~40,000) is observed. Enucleation of [32P] labeled oocytes has shown the cytoplasmic localization of protein I. Methylxanthines and cholera toxin, which inhibit progesterone-induced maturation, block the burst of phosphorylation and do not change the amount or the distribution of [32P] phosphoproteins.  相似文献   

14.
The major metabolic route for the synthesis of phosphoenolpyruvate is from 2-phosphoglycerate catalyzed by the enzyme enolase (EC 4.2.1.11). Enolase occurs at the converging point between glycolysis and gluconeogenesis and may be an important regulatory enzyme. Growth ofEscherichia coli JA 200 pLC 11-8 to stationary phase in low-phosphate medium containing32P-orthophosphate and glucose as the carbon source resulted in incorporation of label into the enzyme. In vivo labeling of enolase was demonstrated by immunoaffinity chromatography of the labeled crude extract. In addition,32P-enolase was identified with sodium dodecylsulfate polyacrylamide gels, two-dimensional gel electrophoresis, and Western blot analysis, followed by autoradiography.  相似文献   

15.
In full-grown oocytes of Xenopus laevis more than 80 % of the total DNA polymerase activity is found in the germinal vesicle (nucleus) and only about 8% in the cytoplasm. The intracellular distribution of the multiple DNA polymerase forms has been studied in oocytes and in embryonic cells. The oocyte nucleus contains a major DNA polymerase species, sedimenting at about 7S, and a minor species sedimenting at about 5S. These enzymes are comparable, respectively, with the DNA polymerases α and β described in other biological systems. In the oocyte cytoplasm, besides a small amount of the 7S form, an 8–9S DNA polymerase activity is also detectable. In the nuclei of embryonic cells, in addition to the DNA polymerase forms present in the oocyte nucleus, a new major form which seems specific for the eggs and embryos is detectable by DEAE chromatography.  相似文献   

16.
Kaur R. and Sood M. L. 1982. Haemonchus contortus: the in vitro effects of dl-tetramisole and rafoxanide on glycolytic enzymes. International Journal for Parasitology 12: 585–588. Various enzymes of glycolysis (hexokinase, phosphoglucomutase, phosphoglucoisomerase, adolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglyceromutase-enolase-pyruvate kinase and lactate dehydrogenase) have been detected in adult Haemonchus contortus. Low pyruvate kinase and lactate dehydrogenase activities suggested an alternate pathway from phosphoenolpyruvate. In vitro incubation had no significant effects on these enzymes and the worm was able to maintain normal metabolism for 12 h. Varying degrees of inhibition of glycolytic enzymes were observed with 50 μg/ml of dl-tetramisole and rafoxanide. The enzymes were inhibited to a greater extent by dl-tetramisole. These effects may block the glycolytic pathway and deprive the parasite of its ATP production.  相似文献   

17.
Kaur R. and Sood M. L. 1982. Haemonchus contortus: the in vitro effects of dl-tetramisole and rafoxanide on glycolytic enzymes. International Journal for Parasitology 12: 585–588. Various enzymes of glycolysis (hexokinase, phosphoglucomutase, phosphoglucoisomerase, adolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglyceromutase-enolase-pyruvate kinase and lactate dehydrogenase) have been detected in adult Haemonchus contortus. Low pyruvate kinase and lactate dehydrogenase activities suggested an alternate pathway from phosphoenolpyruvate. In vitro incubation had no significant effects on these enzymes and the worm was able to maintain normal metabolism for 12 h. Varying degrees of inhibition of glycolytic enzymes were observed with 50 μg/ml of dl-tetramisole and rafoxanide. The enzymes were inhibited to a greater extent by dl-tetramisole. These effects may block the glycolytic pathway and deprive the parasite of its ATP production.  相似文献   

18.
A method is described by which the cytoplasmic and mitochondrial content of malate, oxaloacetate, aspartate, glutamate, 2-oxoglutarate, isocitrate, and citrate can be calculated. The values so obtained confirm that oxaloacetate occurs mainly in the cytosol. Aspartate, glutamate, and 2-oxoglutarate appear to be mainly located in the cytosol. Considerable redistribution of these metabolites occurs in the different nutritional and hormonal states. The redox state of the nicotinamide nucleotides in the two compartments has been calculated using the compartmented values. The mitochondrial redox state of the NADP couple appears to be far more reduced than has hitherto been thought. Control of the glycolytic pathway is vested in phosphofructokinase, pyruvate kinase, and glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase. The most important modifier of hepatic phosphofructokinase seems to be fructose-6-phosphate, which may act by changing the Ki; for citrate, thus permitting a sufficient concentration of citrate to be present in the cytosol for fatty acid synthesis without inhibition of phosphofructokinase. This overcomes the difficulty of the requirement for a rapid glycolytic flux simultaneously with lipid synthesis from citrate. Ultimate control of glycolysis may rest with glucokinase. The extent of deviation of triose phosphate isomerase from equilibrium is suggested as an index of glycolytic pathway flux and direction. Compartmentation of metabolites in the span pyruvate to phosphoenolpyruvate provided additional evidence for an increased flux through the control enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase in gluconeogenesis. The possibility that cAMP may be a positive effector of phosphoenolpyruvate carboxykinase is considered. The source of reducing equivalents for gluconeogenesis is examined. It is concluded that transfer of carbon occurs both as malate and aspartate, and that the requirement for reducing equivalents is met in part by the transfer of malate to the cytosol and in part by NADH generated by the fumarate cycle geared to urea production.  相似文献   

19.
Summary The free-living planarianPolycelis nigra has a complete sequence of glycolytic and tricarboxylic acid cycle enzymes together with an active betaoxidation sequence. Neither octopine dehydrogenase nor any other of the pyruvate: amino acid-linked dehydrogenases was present inP. nigra. The lactate dehydrogenase of this planarian was, however, unusual in being activated by fructose-1,6-bisphosphate.The steady state contents of the glycolytic and tricarboxylic acid cycle intermediates were measured in quick frozenP. nigra. A comparison of the mass action ratios with the equilibrium constants for the glycolytic reactions showed that phosphoglucomutase, glucosephosphate isomerase, aldolase, triosephosphate isomerase, phosphoglyceromutase and phosphopyruvate hydratase reactions are all near equilibrium, whilst phosphofructokinase and pyruvate kinase reactions are displaced from equilibrium. No phosphagen or phosphagen phosphotransferase activity could be detected inP. nigra but it is possible that the high levels of 3-phosphoglycerate could function as an alternative store of high energy phosphate.Under anaerobic conditionsP. nigra produces lactic acid; there is no evidence for the production of succinate, acetate or propionate, acids characteristically produced by parasitic platyhelminths.  相似文献   

20.
《Developmental biology》1985,110(1):230-237
Protein synthesis rates in Xenopus laevis oocytes from stage 1 through stage 6 were measured. In addition, the translational efficiencies, total RNA contents, and percentages of ribosomes in polysomes in growing oocytes at several stages were determined. Stage 1 oocytes synthesize protein at a mean rate of 0.18 ng hr−1 while stage 6 oocytes make protein at a rate of 22.8 ng hr−1. Polysomes from growing and full-grown oocytes sedimented in a sucrose gradient with a peak value of 300 S, corresponding to a weight-average packing density of 10 ribosomes per mRNA. Ribosome transit times of endogenous mRNAs were essentially unchanged at all stages examined. While the oocyte's total ribosomal RNA content was observed to increase about 115-fold during oogenesis, the percentage of ribosomes in polysomes remained constant at approximately 2%. Taken together, the data suggest that the 127-fold increase in protein synthesis which occurs during Xenopus oogenesis involves the progressive recruitment onto polysomes of mRNA from the maternal stockpile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号