首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that Pneumocystis binds to pneumocytes, but the proteins responsible for binding have not been well defined. Mucins are the major glycoproteins present in mucus, which serves as the first line of defence during airway infection. MUC1 is the best characterised membrane‐tethered mucin and is expressed on the surface of most airway epithelial cells. Although by electron microscopy Pneumocystis primarily binds to type I pneumocytes, it can also bind to type II pneumocytes. We hypothesized that Pneumocystis organisms can bind to MUC1 expressed by type II pneumocytes. Overexpression of MUC1 in human embryonic kidney HEK293 cells increased Pneumocystis binding, while knockdown of MUC1 expression by siRNA in A549 cells, a human adenocarcinoma‐derived alveolar type II epithelial cell line, decreased Pneumocystis binding. Immunofluorescence labelling indicated that MUC1 and Pneumocystis were co‐localised in infected mouse lung tissue. Incubation of A549 cells with Pneumocystis led to phosphorylation of ERK1/2 that increased with knockdown of MUC1 expression by siRNA. Pneumocystis caused increased IL‐6 and IL‐8 secretion by A549 cells, and knockdown of MUC1 further increased their secretion in A549 cells. Taken together, these results suggest that binding of Pneumocystis to MUC1 expressed by airway epithelial cells may facilitate establishment of productive infection.  相似文献   

2.
Apically expressed human MUC1 is known to become endocytosed and either to re‐enter the secretory pathway for recycling to the plasma membrane or to be exported by the cells via the formation of multi‐vesicular bodies and the release of exosomes. By using recombinant fusion‐tagged MUC1 as a bait protein we followed an anti‐myc affinity‐based approach for isolating subpopulations of lipid rafts from the plasma membranes and exosomes of MCF‐7 breast cancer cells. MUC1+ lipid rafts were not only found to contain genuine raft proteins (flotillin‐1, prohibitin, G protein, annexin A2), but also raft‐associated proteins linking these to the cytoskeleton (ezrin/villin‐2, profilin II, HSP27, γ‐actin, β‐actin) or proteins in complexes with raft proteins, including the bait protein (HSP60, HSP70). Major overlaps were revealed for the subproteomes of plasma membranous and exosomal lipid raft preparations, indicating that MUC1 is sorted into subpopulations of rafts for its trafficking via flotillin‐dependent pathways and export via exosomes.  相似文献   

3.
Analyses of MUC1-specific cytotoxic T cell precursor (CTLp) frequencies were performed in mice immunized with three different MUC1 vaccine immunotherapeutic agents. Mice were immunized with either a fusion protein comprising MUC1 and glutathione S-transferase (MUC1-GST), MUC1-GST fusion protein coupled to mannan (MFP) or with a recombinant vaccinia virus expressing both MUC1 and interleukin-2. Mouse strain variations in immune responsiveness have been observed with these vaccines. We have constructed mice transgenic for the human MUC1 gene to study MUC1-specific immune responses and the risk of auto-immunity following MUC1 immunization. Transgenic mice immunized with MUC1 were observed to be partially tolerant in that the MUC1-specific antibody response is lower than that observed in syngeneic but non-transgenic mice. However, a significant MUC1-specific CTLp response to all three vaccines was observed, indicating the ability to overcome T cell, but to a lesser extent B cell, tolerance to MUC1 in these mice. Histological analysis indicates no evidence of auto-immunity to the cells expressing the human MUC1 molecule. These results suggest that it is possible to generate an immune response to a cancer-related antigen without damage to normal tissues expressing the antigen. Received: 7 July 1999 / Accepted: 26 August 1999  相似文献   

4.
5.
Mucins are high molecular weight proteins that make up the major components of mucus. Hypersecretion of mucus is a feature of several chronic inflammatory airway diseases. MUC8 is an important component of airway mucus, and its gene expression is upregulated in nasal polyp epithelium. Little is known about the molecular mechanisms of MUC8 gene expression. We first observed overexpression of activator protein‐2alpha (AP2α) in human nasal polyp epithelium. We hypothesized that AP2α overexpression in nasal polyp epithelium correlates closely with MUC8 gene expression. We demonstrated that phorbol 12‐myristate 13‐acetate (PMA) treatment of the airway epithelial cell line NCI‐H292 increases MUC8 gene and AP2α expression. In this study, we sought to determine which signal pathway is involved in PMA‐induced MUC8 gene expression. The results show that the protein kinase C and mitogen‐activating protein/ERK kinase (MAPK) pathways modulate MUC8 gene expression. PD98059 or ERK1/2 siRNA and RO‐31‐8220 or PKC siRNA significantly suppress AP2α as well as MUC8 gene expression in PMA‐treated cells. To verify the role of AP2α, we specifically knocked down AP2α expression with siRNA. A significant AP2α knock‐down inhibited PMA‐induced MUC8 gene expression. While dominant negative AP2α decreased PMA‐induced MUC8 gene expression, overexpressing wildtype AP2α increased MUC8 gene expression. Furthermore, using lentiviral vectors for RNA interference in human nasal polyp epithelial cells, we confirmed an essential role for AP2α in MUC8 gene expression. From these results, we concluded that PMA induces MUC8 gene expression through a mechanism involving PKC, ERK1/2, and AP2α activation in human airway epithelial cells. J. Cell. Biochem. 110: 1386–1398, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Identification of MUC1 proteolytic cleavage sites in vivo   总被引:9,自引:0,他引:9  
Mucins are high molecular weight glycoproteins that provide a protective layer on epithelial surfaces and are involved in cell-cell interactions, signaling, and metastasis. The identification of several membrane-tethered mucins, including MUC1, MUC3, MUC4, and MUC12, has incited interest in the processing of these mucins and the mechanisms that govern their release from the cell surface. MUC1 consists of an extracellular subunit and a membrane-associated subunit. The two moieties are produced from a single precursor polypeptide by an early proteolytic cleavage event but remain associated throughout intracellular processing and transport to the cell surface. We identified the MUC1 proteolytic cleavage site and showed it to be identical in pancreas and colon cell lines and not to be influenced by the presence of heavily glycosylated tandem repeats. The MUC1 cleavage site shows homology with sequences in other cell-surface-associated proteins and may represent a common mechanism for processing of these molecules.  相似文献   

7.
Acute myeloid leukaemia (AML) is an aggressive haematological malignancy with an unmet need for improved therapies. Responses to standard cytotoxic therapy in AML are often transient because of the emergence of chemotherapy‐resistant disease. The MUC1‐C oncoprotein governs critical pathways of tumorigenesis, including self‐renewal and survival, and is aberrantly expressed in AML blasts and leukaemia stem cells (LSCs). However, a role for MUC1‐C in linking leukaemogenesis and resistance to treatment has not been described. In this study, we demonstrate that MUC1‐C overexpression is associated with increased leukaemia initiating capacity in an NSG mouse model. In concert with those results, MUC1‐C silencing in multiple AML cell lines significantly reduced the establishment of AML in vivo. In addition, targeting MUC1‐C with silencing or pharmacologic inhibition with GO‐203 led to a decrease in active β‐catenin levels and, in‐turn, down‐regulation of survivin, a critical mediator of leukaemia cell survival. Targeting MUC1‐C was also associated with increased sensitivity of AML cells to Cytarabine (Ara‐C) treatment by a survivin‐dependent mechanism. Notably, low MUC1 and survivin gene expression were associated with better clinical outcomes in patients with AML. These findings emphasize the importance of MUC1‐C to myeloid leukaemogenesis and resistance to treatment by driving survivin expression. Our findings also highlight the potential translational relevance of combining GO‐203 with Ara‐C for the treatment of patients with AML.  相似文献   

8.
The exit of low‐density lipoprotein derived cholesterol (LDL‐C) from late endosomes (LE)/lysosomes (Ly) is mediated by Niemann–Pick C1 (NPC1), a multipass integral membrane protein on the limiting membranes of LE/Ly, and by NPC2, a cholesterol‐binding protein in the lumen of LE/Ly. NPC2 delivers cholesterol to the N‐terminal domain of NPC1, which is believed to insert cholesterol into the limiting membrane for subsequent transport to other subcellular organelles. Few cytoplasmic factors have been identified to govern cholesterol efflux from LE/Ly, and much less is known about the underlying molecular mechanisms. Here we establish VPS4, an AAA ATPase that has a well‐established role in disassembling the ESCRT (endosomal sorting complex required for transport)‐III polymer, as an important regulator of endosomal cholesterol transport. Knocking down VPS4 in HeLa cells resulted in prominent accumulation of LDL‐C in LE/Ly, and disrupted cholesterol homeostatic responses at the endoplasmic reticulum. The level and localization of NPC1 and NPC2 appeared to be normal in VPS4 knockdown cells. Importantly, depleting any of the ESCRT‐III components did not exert a significant effect on endosomal cholesterol transport. Our results thus identify an important cytoplasmic regulator of endosomal cholesterol trafficking and represent the first functional separation of VPS4 from ESCRT‐III.  相似文献   

9.
Autophagy is an intracellular degradation process involving many Atg proteins, which are recruited hierarchically to regulate this process. Rab/Ypt GTPases and their activators, guanine nucleotide exchange factors (GEFs), which are critical for regulating vesicle trafficking, are also involved in autophagy. Previously, we reported that yeast Vps21 and its GEF Vps9 are required for autophagy. Later, a third yeast VPS9‐domain‐containing protein, V AR P‐l ike 1 (Vrl1), which was identified as a mutant in major laboratory strains, had partially overlapping functions with Vps9 in trafficking. In this study, we showed that Vrl1 performed roles in autophagy, and its VPS9‐domain was crucial for its role in autophagy. We found that localization of Vrl1 differed from the other two VPS9‐domain‐containing proteins, Vps9 and Muk1, and only Vrl1 changed from multipoint to diffusion after starvation. Like Vps9, Vrl1 suppressed autophagic defects caused by the VPS9 deletion. We further showed that these VPS9‐domain‐containing proteins, Vps9, Muk1, and Vrl1, all co‐localized with Atg8 on autophagosomes in cells blocked in any late step of starvation‐induced autophagy, with Vrl1 most often co‐localizing with Atg8. A small portion (<25%) of these VPS9‐domain‐containing proteins were degraded through autophagy. However, a large portion (>60%) of Vrl1 decreased independently of autophagy. We propose that Vrl1 may regulate autophagy in a similar way as Vps9, and the level of Vrl1 partly decreases through both autophagy‐dependent and ‐independent routes.  相似文献   

10.
In adenocarcinomas of the breast and pancreas, underglycosylation of the glycoprotein MUC1, also expressed by normal breast and pancreatic ductal epithelial cells, results in new protein epitopes to which the immune system mounts a cytotoxic T cell response. This cytotoxic immune response is directed primarily against epitopes on the tandem repeat domain of MUC1, and is unconventional in that it is major histocompatibility complex (MHC)-unrestricted. It is therefore necessary to investigate the molecular basis of this immune response in order to enhance and optimize it for immune therapy purposes. In the present study, we characterize new MUC1 transfected human lymphoblastoid cell lines C1R and T2, and a pig kidney epithelial line LLC-PK1, that express MUC1 with either two repeats (MUC1–2R) or 22 repeats (MUC1–22R), and use them as stimulators and targets for cytotoxic T cells (CTL)in vitro. We show that MUC1–2R is processed and glycosylated similarly to MUC1–22R. In contrast to MUC1–22R, MUC1–2R is not recognized by CTL on T2 and C1R cells known for no or low MHC class I expression. It is however recognized when expressed at high density on xenogeneic LLC-PK1 cells. We propose that in MHC-unrestricted recognition, a large number of MUC1 epitopes is necessary to effectively engage the T cell receptor, and that in the presence of a low number of epitopes, engagement of the CD8 co-receptor by MHC class I molecules may be required for completing the signal through the T cell receptor.  相似文献   

11.
We identified VTA1 in a screen for mutations that result in altered vacuole morphology. Deletion of VTA1 resulted in delayed trafficking of the lipophilic dye FM4-64 to the vacuole and altered vacuolar morphology when cells were exposed to the dye 5-(and 6)-carboxy-2',7'-dichlorofluorescein diacetate (CDCFDA). Deletion of class E vacuolar protein sorting (VPS) genes, which encode proteins that affect multivesicular body formation, also showed altered vacuolar morphology upon exposure to high concentrations of CDCFDA. These results suggest a VPS defect for Deltavta1 cells. Deletion of VTA1 did not affect growth on raffinose and only mildly affected carboxypeptidase S sorting. Turnover of the surface protein Ste3p, the a-factor receptor, was affected in Deltavta1 cells with the protein accumulating on the vacuolar membrane. Likewise the alpha-factor receptor Ste2p accumulated on the vacuolar membrane in Deltavta1 cells. We demonstrated that many class E VPS deletion strains are hyper-resistant to the cell wall disruption agent calcofluor white. Deletion of VTA1 or VPS60, another putative class E gene, resulted in calcofluor white hypersensitivity. A Vta1p-green fluorescent protein fusion protein transiently associated with a Pep12p-positive compartment. This localization was altered by deletion of many of the class E VPS genes, indicating that Vta1p binds to endosomes in a manner dependent on the assembly of the endosomal sorting complexes required for transport. Membrane-associated Vta1p co-purified with Vps60p, suggesting that Vta1p is a class E Vps protein that interacts with Vps60p on a prevacuolar compartment.  相似文献   

12.
MUC1 is a transmembrane glycoprotein expressed on the apical surface of epithelial cells and exhibiting structural features characteristic of receptors for cytokines and growth factors. Its intracellular cytoplasmic tail (CT) contains multiple amino acid sequence motifs that, once phosphorylated, serve as docking sites for SH2 domain-containing proteins mediating signal transduction. Most studies examining MUC1 signaling have focused on cancer cells where MUC1 is overexpressed, aberrantly glycosylated, and constitutively phosphorylated. No studies have determined the signaling pathways activated in response to stimulation of its ectodomain. To better understand the signaling mechanisms of MUC1, we stably transfected HEK293 cells with an expression plasmid encoding a chimeric protein consisting of the extracellular and transmembrane domains of CD8 and the MUC1 CT (CD8/MUC1). Extracellular treatment of HEK293-CD8/MUC1 cells with CD8 antibody induced intracellular Tyr phosphorylation of the MUC1 CT and activated ERK1/2, but not the p38, SAPK/JNK, or ERK5 MAP kinases. Moreover, phosphorylation of ERK1/2 was completely blocked using a CT deletion mutant or a mutant construct in which all Tyr residues in the CT were changed to Phe. These results establish that Tyr phosphorylation of the MUC1 CT is required for activation of a downstream ERK1/2 pathway.  相似文献   

13.
MUC1 is a type I transmembrane glycoprotein aberrantly overexpressed in various cancer cells. It is thought to serve as a physical barrier from the extracellular environment and also as a receptor for various extracellular molecules. However, little is known about the fate of MUC1 during and after the interaction with these molecules. In the present study, we used anti-MUC1 antibody as an interacting molecule and investigated the cellular trafficking of MUC1. Our results showed that: (1) anti-MUC1 antibody was internalized only in MUC1 expressing cells and triggered internalization and down-regulation of MUC1; (2) the internalization of MUC1 by anti-MUC1 antibody required the cytoplasmic tail of MUC1 and was suppressed by inhibitors of Na+/H+ exchanger, and caveola/raft-dependent internalization, but not by an inhibitor of clathrin-dependent internalization. We conclude that antibody-induced internalization of MUC1 involves the macropinocytotic pathway.  相似文献   

14.
MUC1 is a transmembrane glycoprotein, apically expressed in most epithelial cells, used in the differential diagnosis of carcinomas and for discrimination of tumors of non-epithelial origin showing epithelioid features. Little attention has been paid so far though, on its possible significance in embryonic tissues. A preliminary study from our group revealed MUC1 expression in the cap mesenchymal cells during human nephrogenesis, suggesting a role for MUC1 in the process of mesenchymal-to-epithelial transition. This study aimed at investigating the expression pattern of MUC1 in various developing structures of human fetal kidney. Expression of MUC1 was examined in kidneys of 5 human fetuses. MUC1 immunoreactivity was detected in ureteric bud tips, in collecting tubules, in cap mesenchymal cells undergoing the initial phases of mesenchymal-to-epithelial transition, in renal vesicles, comma-bodies, and S-shaped bodies. Our previous preliminary report suggested a role for MUC1 in the initial phases of the process of mesenchymal-to-epithelial transition. The present data suggest that MUC1 expression characterizes multiple structures during human nephrogenesis, from the ureteric bud, to the initial phases of mesenchymal-to-epithelial transition and that MUC1 should be added to the genes activated during the process of mesenchymal-to-epithelial transition in the cap mesenchyme of human kidney.Key words: MUC1, immunohistochemistry, fetal kdney, nephrogenesis, renal vesicles, comma and S-shaped bodies, collecting tubules.  相似文献   

15.
MUC1 is a transmembrane mucin with important functions in normal and transformed cells, carried out by the extracellular domain or the cytoplasmic tail. A characteristic feature of the MUC1 extracellular domain is the variable number of tandem repeats (VNTR) region. Alternative splicing may regulate MUC1 expression and possibly function. We developed an RT-PCR method for efficient isolation of MUC1 mRNA isoforms that allowed us to evaluate the extent of alternative splicing of MUC1 and elucidate some of the rules that govern this process. We cloned and analyzed 21, 24, and 36 isoforms from human tumor cell lines HeLa, MCF7, and Jurkat, respectively, and 16 from normal activated human T cells. Among the 78 MUC1 isoforms we isolated, 76 are new and different cells showed varied MUC1 expression patterns. The VNTR region of exon 2 was recognized as an intron with a fixed 5′ splice site but variable 3′ splice sites. We also report that the 3506 A/G SNP in exon 2 can regulate 3′ splice sites selection in intron 1 and produce different MUC1 short isoform proteins. Furthermore, the SNP A to G mutation was also observed in vivo, during de novo tumor formation in MUC1+/?KrasG12D/+PtenloxP/loxP mice. No specific functions have been associated with previously reported short isoforms. We now report that one new G SNP-associated isoform MUC1/Y-LSP, but not the A SNP-associated isoform MUC1/Y, inhibits tumor growth in immunocompetent but not immunocompromised mice.  相似文献   

16.
Sec1/Munc‐18 (SM) family proteins are essential regulators in intracellular transport in eukaryotic cells. The SM protein Vps33 functions as a core subunit of two tethering complexes, class C core vacuole/endosome tethering (CORVET) and homotypic fusion and vacuole protein sorting (HOPS) in the endocytic pathway in yeast. Metazoan cells possess two Vps33 proteins, VPS33A and VPS33B, but their precise roles remain unknown. Here, we present a comparative analysis of Caenorhabditis elegans null mutants for these proteins. We found that the vps‐33.1 (VPS33A) mutants exhibited severe defects in both endocytic function and endolysosomal biogenesis in scavenger cells. Furthermore, vps‐33.1 mutations caused endocytosis defects in other tissues, and the loss of maternal and zygotic VPS‐33.1 resulted in embryonic lethality. By contrast, vps‐33.2 mutants were viable but sterile, with terminally arrested spermatocytes. The spermatogenesis phenotype suggests that VPS33.2 is involved in the formation of a sperm‐specific organelle. The endocytosis defect in the vps‐33.1 mutant was not restored by the expression of VPS‐33.2, which indicates that these proteins have nonredundant functions. Together, our data suggest that VPS‐33.1 shares most of the general functions of yeast Vps33 in terms of tethering complexes in the endolysosomal system, whereas VPS‐33.2 has tissue/organelle specific functions in C. elegans.   相似文献   

17.
Endometrial epithelial cells express MUC1 with increased abundance in the secretory phase of the menstrual cycle, when embryo implantation occurs. MUC1 is associated with the apical surface of epithelial cells and is also secreted, being detectable in uterine fluid at elevated levels in the implantation phase. However, its physiological role is uncertain; it may either inhibit intercellular adhesion by steric hindrance or carry carbohydrate recognition structures capable of mediating cell-cell interaction. Here we show that endometrial epithelium expresses both Sialyl-Lewis x (SLex) and Sialyl-Lewis a (SLea), with a distribution and pattern of menstrual cycle regulation similar to that of MUC1. Using Western blotting and double determinant ELISA of uterine flushings, we demonstrate that SLex is associated with MUC1 core protein. The endometrial carcinoma cell lines HEC1A and HEC1B are shown to express MUC1 in a mosaic pattern, while three other cell lines express much lower amounts. HEC1A expresses both SLex and SLea while HEC1B expresses SLea only. Immunoprecipitation has been used to demonstrate that SLea is associated with MUC1 in HEC1B cells, and both SLex and SLea are associated with MUC1 in HEC1A cells.  相似文献   

18.
MUC1 mucin is a large transmembrane glycoprotein, of which the extracellular domain is formed by a repeating 20 amino acid sequence, GVTSAPDTRPAPGSTAPPAH. In normal breast epithelial cells, the extracellular domain is densely covered with highly branched complex carbohydrate structures. However, in neoplastic breast tissue, the extracellular domain is underglycosylated, resulting in the exposure of a highly immunogenic core peptide epitope (PDTRP in bold above) as well as the normally cryptic core Tn (GalNAc), STn (sialyl alpha2-6 GalNAc), and TF (Gal beta1-3 GalNAc) carbohydrates. In the present study, NMR methods were used to correlate the effects of cryptic glycosylation outside of the PDTRP core epitope region to the recognition and binding of a monoclonal antibody, Mab B27.29, raised against the intact tumor-associated MUC1 mucin. Four peptides were studied: a MUC1 16mer peptide of the sequence Gly1-Val2-Thr3-Ser4-Ala5-Pro6-Asp7-Thr8-Arg9-Pro10-Ala11-Pro12-Gly13-Ser14-Thr15-Ala16, two singly Tn-glycosylated versions of this peptide at either Thr3 or Ser4, and a doubly Tn-glycosylated version at both Thr3 and Ser4. The results of these studies showed that the B27.29 MUC1 B-cell epitope maps to two separate parts of the glycopeptide, the core peptide epitope spanning the PDTRP sequence and a second (carbohydrate) epitope comprised of the Tn moieties attached at Thr3 and Ser4. The implications of these results are discussed within the framework of developing a glycosylated second-generation MUC1 glycopeptide vaccine.  相似文献   

19.
The release of extracellular vesicles, also known as outer membrane vesicles, membrane vesicles, exosomes, and microvesicles, is an evolutionarily conserved phenomenon from bacteria to eukaryotes. It has been reported that Mycobacterium tuberculosis releases extracellular vesicles harboring immunologically active molecules, and these extracellular vesicles have been suggested to be applicable in vaccine development and biomarker discovery. However, the comprehensive proteomic analysis has not been performed for M. tuberculosis extracellular vesicles. In this study, we identified a total of 287 vesicular proteins by four LC‐MS/MS analyses with high confidence. In addition, we identified several vesicular proteins associated with the virulence of M. tuberculosis. This comprehensive proteome profile will help elucidate the pathogenic mechanism of M. tuberculosis. The data have been deposited to the ProteomeXchange with identifier PXD001160 ( http://proteomecentral.proteomexchange.org/dataset/PXD001160 ).  相似文献   

20.
Purpose: CD227 (MUC1), a membrane-associated glycoprotein expressed by many types of ductal epithelia, including pancreas, breast, lung, and gastrointestinal tract, is overexpressed and aberrantly glycosylated by malignant cells. We sought to define epitopes on MUC1 recognized by the different cell-mediated immune responses by an in vivo assay. Epitopes identified by this assay were evaluated for efficacy to protect mice transgenic for human MUC1 (MUC1.Tg) against MUC1-expressing tumor growth. Methods: We investigated contributions of the tandem repeat (TR) and the cytoplasmic tail (CT) of MUC1 to the MUC1-specific immunological rejection of tumor cells. MUC1 cDNA constructs, in which the TR region was deleted or the CT was truncated, were transfected into two different murine tumor cell lines (B16 and Panc02), which were used to challenge mice and evaluate immunological rejection of the tumors. We used tumor rejection in vivo to define epitopes on the TR and CT of MUC1 recognized by T cell–mediated immune responses in a preclinical murine model. Results: Our findings demonstrated that the TR and a portion of the MUC1 CT contributed to CD4+ T cell rejection of MUC1-expressing B16 tumor cells, but not rejection of MUC1-expressing Panc02 tumor cells. A separate epitope in the CT of MUC1 was necessary for CD8+ T cell rejection of Panc02 tumor cells. Based on these studies, we sought to evaluate the efficacy of immunizing mice transgenic for (and immunologically tolerant to) human MUC1 with peptides derived from the amino acid sequence of the CT of MUC1. Results showed that survival can be significantly prolonged in vaccinated MUC1.Tg mice challenged with MUC1-expressing tumor cells, without induction of autoimmune responses. Conclusions: These studies demonstrated that MUC1 peptides may be utilized as an effective anticancer immunotherapeutic, and confirmed the importance of immunogenic epitopes outside of the TR.Abbreviations aa Amino acid - CT Cytoplasmic tail - IFN- Interferon gamma - MUC1.Tg MUC1 transgenic mice - TR Tandem repeat - wt Wild-type C57BL/6 mice This work was supported by National Institutes of Health grants CA72712 and CA57362 (M.A.H.), National Institutes of Health training grant CA09476 (K.G.K., A.J.G, and M.L.V.), and fellowship awards from the University of Nebraska Medical Center (to K.G.K. and M.L.V).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号