首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report synthesis of a cerium‐activated strontium pyrophosphate (Sr2P2O7) phosphor using a high‐temperature combustion method. Samples were characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), photoluminescence (PL) and thermoluminescence (TL). The XRD pattern reveals that Sr2P2O7 has an α‐phase with crystallization in the orthorhombic space group of Pnam. The IR spectrum of α‐Sr2P2O7 displays characteristic bands at 746 and 1190 cm‐1 corresponding to the absorption of (P2O7)‐4. PL emission spectra exhibit a broad emission band around 376 nm in the near‐UV region due to the allowed 5d–4f transition of cerium and suggest its applications in a UV light‐emitting diode (LED) source. PL also reveals that the emission originates from 5d–4f transition of Ce3+ and intensity increases with doping concentration. TL measurements made after X‐ray irradiation, manifest a single intense glow peak at around 192°C, which suggests that this is an outstanding candidate for dosimetry applications. The kinetic parameters, activation energy and frequency factor of the glow curve were calculated using different analysis methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A high voltage LiNi0.5Mn0.3Co0.2O2/graphite cell with a fluorinated electrolyte formulation 1.0 m LiPF6 fluoroethylene carbonate/bis(2,2,2‐trifluoroethyl) carbonate is reported and its electrochemical performance is evaluated at cell voltage of 4.6 V. Comparing with its nonfluorinated electrolyte counterpart, the reported fluorinated one shows much improved Coulombic efficiency and capacity retention when a higher cut‐off voltage (4.6 V) is applied. Scanning electron microscopy/energy dispersive X‐ray spectroscopy and X‐ray photoelectron spectroscopy data clearly demonstrate the superior oxidative stability of the new electrolyte. The structural stability of the bulk cathode materials cycled with different electrolytes is extensively studied by X‐ray absorption near edge structure and X‐ray diffraction.  相似文献   

3.
A trivalent rare‐earth ion (Sm3+)‐doped LiNa3P2O7 (LNPO) phosphor was synthesized using a conventional high‐temperature solid‐state reaction route. A predominant orthorhombic phase of LNPO was observed in all X‐ray diffraction patterns. The surface states of the LNPO:Sm phosphor were confirmed by X‐ray photoelectron spectroscopy. Under 401 nm excitation, the Sm‐doped LNPO phosphors showed sharp emission peaks at 563, 600 and 647 nm that are related to the f–f transition of Sm3+ ions. The optimum concentration of Sm3+ (9 mol%) produced Commission Internationale de l'Eclairage chromaticity coordinates, color rendering index and correlated color temperature of (0.564, 0.434), 42 and 1843 K, respectively.  相似文献   

4.
A novel type of hybrid membrane has been fabricated by incorporating superacidic sulfated zirconia (S‐ZrO2) fibers into recast Nafion for proton exchange membrane fuel cells (PEMFCs). With the introduction of electrospun superacidic fiber mats, a large amount of protogenic groups aggregated in the interfacial region between S‐ZrO2 fibers and the ionomer matrix, forming continuous pathways for facile proton transport. The resultant hybrid membranes had high proton conductivities, which were controlled by selectively adjusting the fiber diameter and fiber volume fraction. Consequently, the superacidic S‐ZrO2 electrospun fibers are promising filler materials and hybrid membranes containing S‐ZrO2 fiber mats can be potentially used in high‐performance fuel cells.  相似文献   

5.
The exploration of new and efficient energy storage mechanisms through nanostructured electrode design is crucial for the development of high‐performance rechargeable batteries. Herein, black phosphorus quantum dots (BPQDs) and Ti3C2 nanosheets (TNSs) are employed as battery and pseudocapacitive components, respectively, to construct BPQD/TNS composite anodes with a novel battery‐capacitive dual‐model energy storage (DMES) mechanism for lithium‐ion and sodium‐ion batteries. Specifically, as a battery‐type component, BPQDs anchored on the TNSs are endowed with improved conductivity and relieved stress upon cycling, enabling a high‐capacity and stable energy storage. Meanwhile, the pseudocapacitive TNS component with further atomic charge polarization induced by P? O? Ti interfacial bonds between the two components allows enhanced charge adsorption and efficient interfacial electron transfer, contributing a higher pseudocapacitive value and fast energy storage. The DMES mechanism is evidenced by substantial characterizations of X‐ray photoelectron spectroscopy and X‐ray absorption fine structure spectroscopy, density functional theory calculations, and kinetics analyses. Consequently, the composite electrode exhibits superior battery performance, especially for lithium storage, such as high capacity (910 mAh g?1 at 100 mA g?1), long cycling stability (2400 cycles with a capacity retention over 100%), and high rate capability, representing the best comprehensive battery performance in BP‐based anodes to date.  相似文献   

6.
Three new polyketides, named daldinone F ( 1 ), nodulisporin G ( 2 ), and dalmanol C ( 3 ), together with five known compounds, 4 – 8 , were isolated from cultures of Daldinia eschscholzii. The structures of the new compounds were elucidated by extensive NMR and MS analyses. Compound 1 showed moderate cytotoxic activity against SW480 cancer cells with an IC50 value of 9.59 μM , and its absolute configuration was determined by single crystal X‐ray diffraction.  相似文献   

7.
Bioguided fractionation of Xylopia sericea antiplasmodial dichloromethane leaves extract led to the isolation of (?)‐7‐oxo‐ent‐kaur‐16‐en‐19‐oic acid (C20H28O3) that was identified by a combination of 1D and 2D NMR experiments (COSY, HMBC, HSQC, HSQC‐TOCSY, HSQC‐NOESY and NOESY) and by X‐ray crystallography. A feature to be pointed out is its (4R) configuration that was inferred from the NOE experiments (HSQC‐NOESY and NOESY) and X‐ray crystallography. In vitro evaluation of this rare diterpene acid against the chloroquine‐resistant strain Plasmodium falciparum W2 by the PfLDH method showed it disclosed a low antiplasmodial activity and was not cytotoxic to HepG2 cells (CC50 862.6±6.7 μm ) by the MTT assay. The unequivocal NMR signals assignments, the X‐ray crystallographic structure, the assessment to the bioactivities and the occurrence this diterpene in X. sericea are reported here for the first time.  相似文献   

8.
Erbium‐doped nano‐sized Gd2O3 phosphor was prepared by a solution combustion method in the presence of urea as a fuel. The phosphor was characterized by X‐ray diffractometry (XRD), Fourier transform infra‐red spectroscopy, energy dispersive X‐ray analysis (EDX) and transmission electron microscopy (TEM). The results of the XRD shows that the phosphor has a monoclinic phase, which was further confirmed by the TEM results. Particle size was calculated by the Debye–Scherrer formula. The erbium‐doped Gd2O3 nanophosphor was revealed to have good down‐conversion (DC) properties and the intensity of phosphor could be modified by annealing. The effects of annealing at 900°C on the particle size and luminescence properties were studied and compared with freshly prepared Gd2O3:Er3+ nanoparticles. The average particle sizes were calculated as 8 and 20 nm for the freshly prepared samples and samples annealed at 900°C for 1 h, respectively. The results show that both freshly prepared and annealed Gd2O3:Er3+ have monoclinic structure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A pair of l ‐leucine (l ‐Leu) and d ‐leucine (d ‐Leu) was incorporated into α‐aminoisobutyric acid (Aib) peptide segments. The dominant conformations of four hexapeptides, Boc‐l ‐Leu‐Aib‐Aib‐Aib‐Aib‐l ‐Leu‐OMe (1a), Boc‐d ‐Leu‐Aib‐Aib‐Aib‐Aib‐l ‐Leu‐OMe (1b), Boc‐Aib‐Aib‐l ‐Leu‐l ‐Leu‐Aib‐Aib‐OMe (2a), and Boc‐Aib‐Aib‐d ‐Leu‐l ‐Leu‐Aib‐Aib‐OMe (2b), were investigated by IR, 1H NMR, CD spectra, and X‐ray crystallographic analysis. All peptides 1a,b and 2a,b formed 310‐helical structures in solution. X‐ray crystallographic analysis revealed that right‐handed (P) 310‐helices were present in 1a and 1b and a mixture of right‐handed (P) and left‐handed (M) 310‐helices was present in 2b in their crystalline states. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Two racemic tetrathiafulvalene‐[2.2]paracyclophane electron donors EDT‐TTF‐[2.2]paracyclophane 1 and (COOMe)2‐TTF‐[2.2]paracyclophane 2 have been synthesized via the phosphite mediated cross coupling strategy. Chiral HPLC allowed the optical resolution of the (RP) and (SP) enantiomers for both compounds. Solid‐state structures of (RP)‐ 1 and (rac)‐ 2 have been determined by single crystal X‐ray analysis. Intermolecular π‐π and S???S interactions are disclosed in the packing. Single crystal X‐ray analysis of (RP)‐ 1 combined with experimental and theoretical circular dichroism spectra allowed the assignment of the absolute configuration of the enantiomers of 1 and 2 .  相似文献   

11.
Constructing highly active electrocatalysts with superior stability at low cost is a must, and vital for the large‐scale application of rechargeable Zn–air batteries. Herein, a series of bifunctional composites with excellent electrochemical activity and durability based on platinum with the perovskite Sr(Co0.8Fe0.2)0.95P0.05O3?δ (SCFP) are synthesized via a facile but effective strategy. The optimal sample Pt‐SCFP/C‐12 exhibits outstanding bifunctional activity for the oxygen reduction reaction and oxygen evolution reaction with a potential difference of 0.73 V. Remarkably, the Zn–air battery based on this catalyst shows an initial discharge and charge potential of 1.25 and 2.02 V at 5 mA cm?2, accompanied by an excellent cycling stability. X‐ray photoelectron spectroscopy, X‐ray absorption near‐edge structure, and extended X‐ray absorption fine structure experiments demonstrate that the superior performance is due to the strong electronic interaction between Pt and SCFP that arises as a result of the rapid electron transfer via the Pt? O? Co bonds as well as the higher concentration of surface oxygen vacancies. Meanwhile, the spillover effect between Pt and SCFP also can increase more active sites via lowering energy barrier and change the rate‐determining step on the catalysts surface. Undoubtedly, this work provides an efficient approach for developing low‐cost and highly active catalysts for wider application of electrochemical energy devices.  相似文献   

12.
A novel Sn4P3/graphite composite anode material with superior capacity and cycling performance (651 mA h g?1 after 100 cycles) is investigated by in situ X‐ray absorption spectroscopy. Extended X‐ray absorption fine structure modeling and detailed analysis of local environment changes are correlated to the cell capacity and reveal the mechanism of lithiation/delithiation process. Results show that in the first two lithiation/delithiation cycles crystalline Sn4P3 is fully converted to an amorphous SnPx phase, which in further cycles participates in reversible conversion and alloying reactions. The superior reversibility of this material is attributed to the highly dispersed SnPx in the graphite matrix, which provides enhanced electrical conductivity and prevents aggregation of Sn clusters during the lithiation/delithiation process. The gradual capacity fading in long‐term cycling is attributed to the observed increase in the size and the amount of metallic Sn clusters in the delithiated state, correlated to the reduced recovery of the SnPx phase. This paper reveals the mechanism responsible for the highly reversible tin phosphides and provides insights for improving the capacity and cycle life of conversion and alloying materials.  相似文献   

13.
A novel tropoloisoquinoline alkaloid, neotatarine ( 1 ), was isolated from the 95% ethanol extract of the rhizome parts of Acorus calamus L. The chemical structure was unambiguously elucidated by spectroscopic and single‐crystal X‐ray diffraction analysis. Neotatarine ( 1 ) exhibited significantly inhibitory activity against Aβ25 – 35 induced PC12 cell death with 2, 4 and 8 μm comparing with the assay control (P < 0.01).  相似文献   

14.
One, two, three and four electron reduced forms of α-[P2W18O62]6− in aqueous acidic electrolyte media have been selectively generated by bulk electrolysis from a solution that has an initial pH of 3.6. The reactivities of the reduced polyoxometalate anions and identities of products formed in the presence and absence of dioxygen have been assessed via oxygen and hydrogen Clark-type electrodes, a pH electrode and rotating disk electrode voltammetry. [P2W18O62]7− is stable to protons but is slowly oxidized by dioxygen (timescale: hours to days) back to [P2W18O62]6−. In contrast, [P2W18O62]8− reacts more rapidly with O2 and slowly with H+, whereas generation of the [P2W18O62]9− and [P2W18O62]10− anion is accompanied by a large increase in pH and rapid reaction with O2 or, in its absence, with H+. Consequently, it is concluded that photocatalytic reactions based upon [P2W18O62]6− chemistry are only likely to be of significance if [P2W18O62]9− or more highly reduced species are generated and form part of the catalytic cycle.  相似文献   

15.
This paper focuses on an optical study of a Tb3+/Bi3+‐doped and Sm3+/La3+‐ doped Ca2Al2SiO7 phosphor synthesized using combustion methods. Here, Ca2Al2SiO7:Sm3+ showed a red emission band under visible light excitation but, when it co‐doped with La3+ ions, the emission intensity was further enhanced. Ca2Al2SiO7:Tb3+ shows the characteristic green emission band under near‐ultraviolet light excitation wavelengths, co‐doping with Bi3+ ions produced enhanced photoluminescence intensity with better colour tunable properties. The phosphor exhibited better phase purity and crystallinity, confirmed by X‐ray diffraction. Binding energies of Ca(2p), Al(2p), Si(2p), O(1s) were studied using X‐ray photoelectron spectroscopy. The reported phosphor may be a promising visible light excited red phosphor for light‐emitting diodes and energy conversion devices.  相似文献   

16.
Twelve new ent‐labdane diterpenoids, hypofolins A – F ( 1 – 6 ) and hypofolins G – L ( 7a / 7b , 8a / 8b , and 9a / 9b ), were isolated from the roots of Hypoestes phyllostachya ‘Pink Splash’. Their structures were elucidated by extensive 1D‐ and 2D‐NMR spectroscopic and HR‐MS data. The absolute configurations of 1 , 2 , 5 , and 7a / 7b were determined by single crystal X‐ray diffraction and ECD analysis, as well as chemical transformations. Compounds 7a / 7b , 8a / 8b , and 9a / 9b were isolated as three pairs of interconverting mixture of two isomers between ketone and hemiketal types. Compound 1 showed weak cytotoxicity against SMMC‐7721 cell line with IC50 value of 31.40 μm .  相似文献   

17.
Highly selective and efficient enrichment of glycopeptides from complex biological samples is necessary. In this study, novel zwitterionic hydrophilic polydopamine‐coated magnetic graphene composites (magG/PDA/Au/l ‐Cys) were synthesized and applied to the enrichment of glycopeptides. The size, morphology, and composition of magG/PDA/Au/l ‐Cys composites were investigated by transmission electron microscopy, scanning electron microscopy, FT‐infrared spectroscopy, and X‐ray diffraction. The composites possessed a number of desirable characteristics, including good biocompatibility easy separation property and excellent hydrophilicity. By virtue of the features contributed by different ingredients, the prepared composites demonstrated superior performance for glycopeptide enrichment with high sensitivity (0.1 fmol), efficiency, selectivity (1:100), and repeatability (at least ten times). In addition, the composites were successfully applied to the enrichment of glycopeptides from human serum and 40 unique N‐glycosylation peptides from 31 different N‐linked glycoproteins were identified. The superior hydrophilic material is of great potential for the analysis of glycoproteins.  相似文献   

18.
A new nonionic reverse micellar system is developed by blending two nonionic surfactants, Triton X‐45 and Span 80. At total surfactant concentrations lower than 60 mmol/L and molar fractions of Triton X‐45 less than 0.6, thermodynamically stable reverse micelles of water content (W0) up to 30 are formed. Di(2‐ethylhexyl) phosphoric acid (HDEHP; 1–2 mmol/L) is introduced into the system for chelating transition metal ions that have binding affinity for histidine‐rich proteins. HDEHP exists in a dimeric form in organic solvents and a dimer associated with one transition metal ion, including copper, zinc, and nickel. The copper‐chelate reverse micelles (Cu‐RM) are characterized for their W0, hydrodynamic radius (Rh), and aggregation number (Nag). Similar with reverse micelles of bis‐2‐ethylhexyl sodium sulfosuccinate (AOT), Rh of the Cu‐RM is also linearly related to W0. However, Nag is determined to be 30–90 at W0 of 5–30, only quarter to half of the AOT reverse micelles. Then, selective metal‐chelate extraction of histidine‐rich protein (myoglobin) by the Cu‐RM is successfully performed with pure and mixed protein systems (myoglobin and lysozyme). The solubilized protein can be recovered by stripping with imidazole or ethylinediaminetetraacetic acid (EDTA) solution. Because various transition metal ions can be chelated to the reverse micelles, it is convinced that the system would be useful for application in protein purification as well as simultaneous isolation and refolding of recombinant histidine‐tagged proteins expressed as inclusion bodies. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

19.
The thickness of solid‐state electrolytes (SSEs) significantly affects the energy density and safety performance of all‐solid‐state lithium batteries. However, a sufficient understanding of the reactivity toward lithium metal of ultrathin SSEs (<100 µm) based on NASICON remains lacking. Herein, for the first time, a self‐standing and ultrathin (70 µm) NASICON‐type Li1.5Al0.5Ge1.5(PO4)3 (LAGP) electrolyte via a scalable solution process is developed, and X‐ray photoelectron spectroscopy reveals that changes in LAGP at the metastable Li–LAGP interface during battery operation is temperature dependent. Severe germanium reduction and decrease in LAGP particle size are detected at the Li–LAGP interface at elevated temperature. Oriented plating of lithium metal on its preferred (110) face occurs during in situ X‐ray diffraction cycling.  相似文献   

20.
The development of all‐solid‐state lithium–sulfur batteries is hindered by the poor interfacial properties at solid electrolyte (SE)/electrode interfaces. The interface is modified by employing the highly concentrated solvate electrolyte, (MeCN)2?LiTFSI:TTE, as an interlayer material at the electrolyte/electrode interfaces. The incorporation of an interlayer significantly improves the cycling performance of solid‐state Li2S batteries compared to the bare counterpart, exhibiting a specific capacity of 760 mAh g?1 at cycle 100 (330 mAh g?1 for the bare cell). Electrochemical impedance spectroscopy shows that the interfacial resistance of the interlayer‐modified cell gradually decreases as a function of cycle number, while the impedance of the bare cell remains almost constant. Cross‐section scanning electron microscopy (SEM)/ energy dispersive X‐ray spectroscopy (EDS) measurements on the interlayer‐modified cell confirm the permeation of solvate into the cathode and the SE with electrochemical cycling, which is related to the decrease in cell impedance. In order to mimic the full permeation of the solvate across the entire cell, the solvate is directly mixed with the SE to form a “solvSEM” electrolyte. The hybrid Li2S cell using a solvSEM electrolyte exhibits superior cycling performance compared to the solid‐state cells, in terms of Li2S loading, Li2S utilization, and cycling stability. The improved performance is due to the favorable ionic contact at the battery interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号