首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The classical definition of mesophyll conductance (g m) represents an apparent parameter (g m,app) as it places (photo)respired CO2 at the same compartment where the carboxylation by Rubisco takes place. Recently, Tholen and co-workers developed a framework, in which g m better describes a physical diffusional parameter (g m,dif). They partitioned mesophyll resistance (r m,dif = 1/g m,dif) into two components, cell wall and plasmalemma resistance (r wp) and chloroplast resistance (r ch), and showed that g m,app is sensitive to the ratio of photorespiratory (F) and respiratory (R d) CO2 release to net CO2 uptake (A): g m,app = g m,dif/[1?+?ω(F?+?R d)/A], where ω is the fraction of r ch in r m,dif. We herein extend the framework further by considering various scenarios for the intracellular arrangement of chloroplasts and mitochondria. We show that the formula of Tholen et al. implies either that mitochondria, where (photo)respired CO2 is released, locate between the plasmalemma and the chloroplast continuum or that CO2 in the cytosol is completely mixed. However, the model of Tholen et al. is still valid if ω is replaced by ω(1?σ), where σ is the fraction of (photo)respired CO2 that experiences r ch (in addition to r wp and stomatal resistance) if this CO2 is to escape from being refixed. Therefore, responses of g m,app to (F?+?R d)/A lie somewhere between no sensitivity in the classical method (σ =1) and high sensitivity in the model of Tholen et al. (σ =0).  相似文献   

2.
Many aquatic algae induce a CO2-concentrating mechanism (CCM) associated with active inorganic carbon transport to maintain high photosynthetic affinity using dissolved inorganic carbon even in low-CO2 (LC) conditions. In the green alga Chlamydomonas reinhardtii, a Ca2+-binding protein CAS was identified as a novel factor regulating the expression of CCM-related proteins including bicarbonate transporters. Although previous studies revealed that CAS associates with the thylakoid membrane and changes its localization in response to CO2 and light availability, its detailed localization in the chloroplast has not been examined in vivo. In this study, high-resolution fluorescence images of CAS fused with a Chlamydomonas-adapted fluorescence protein, Clover, were obtained by using a sensitive hybrid detector and an image deconvolution method. In high-CO2 (5% v/v) conditions, the fluorescence signals of Clover displayed a mesh-like structure in the chloroplast and part of the signals discontinuously overlapped with chlorophyll autofluorescence. The fluorescence signals gathered inside the pyrenoid as a distinct wheel-like structure at 2 h after transfer to LC-light condition, and then localized to the center of the pyrenoid at 12 h. These results suggest that CAS could move in the chloroplast along the thylakoid membrane in response to lowering CO2 and gather inside the pyrenoid during the operation of the CCM.  相似文献   

3.

Aims

Despite extensive studies on effects of elevated CO2 concentration ([CO2]e) on plant growth, few studies have investigated the responses of native grassland plant species to [CO2]e in terms of nutrient acquisition.

Methods

The effects of [CO2]e (769 ± 23 ppm) on Artemisia frigida and Stipa krylovii, two dominant species in Inner Mongolia steppe were investigated by growing them for 7 weeks in Open-Top Chambers (OTC).

Results

Exposure to [CO2]e enhanced shoot and root growth of A. frigida and S. krylovii. Elevated [CO2] increased photosynthetic rates (Pn) by 34 % in A. frigida but decreased Pn by 52 % in S. krylovii. Moreover, root-secreted acid phosphatase activity in A. frigida was stimulated by [CO2]e, while exudation of malate from roots of S. krylovii was suppressed by [CO2]e. Exposure to [CO2]e led to a decrease in P concentration in shoots and roots of A. frigida and S. krylovii, but total amount of P accumulated in shoots and roots of both species was increased by [CO2]e.

Conclusions

The two dominant species in temperate steppes differed in their responses to [CO2]e, such that A. frigida was more adapted to [CO2]e than S. krylovii under low availability of soil P.
  相似文献   

4.
Impact of different levels of elevated CO 2 on the activity of Frankia (Nitrogen-fixing actinomycete) in Casuarina equisetifolia rooted stem cuttings has been studied to understand the relationship between C. equisetifolia, Frankia and CO2. The stem cuttings of C. equietifolia were collected and treated with 2000 ppm of Indole Butyric Acid (IBA) for rooting. Thus vegetative propagated rooted stem cuttings of C. equisetifolia were inoculated with Frankia and placed in the Open top chambers (OTC) with elevated CO2 facilities. These planting stocks were maintained in the OTC for 12 months under different levels of elevated CO2 (ambient control, 600 ppm, 900 ppm). After 12 months, the nodule numbers, bio mass, growth, and photosynthesis of C. equisetifolia rooted stem cuttings inoculated with Frankia were improved under 600 ppm of CO2. The rooted stem cuttings of C. equisetifolia inoculated with Frankia showed a higher number of nodules under 900 ppm of CO2 and cuttings without Frankia inoculation exhibited poor growth. Tissue Nitrogen (N) content was also higher under 900 ppm of CO2 than ambient control and 600 ppm levels. The photosynthetic rate was higher (17.8 μ mol CO2 m?2 s?1) in 900 ppm of CO2 than in 600 ppm (13.2 μ mol CO2 m?2 s?1) and ambient control (8.3 μ mol CO2 m?2 s?1). This study showed that Frankia can improve growth, N fixation and photosynthesis of C. equietifolia rooted stem cuttings under extreme elevated CO2 level conditions (900 ppm).  相似文献   

5.
6.
Peatlands are a critical carbon store comprising 30% of the Earth’s terrestrial soil carbon. Sphagnum mosses comprise up to 90% of peat in the northern hemisphere but impacts of climate change on Sphagnum mosses are poorly understood, limiting development of sustainable peatland management and restoration. This study investigates the effects of elevated atmospheric CO2 (eCO2) (800 ppm) and hydrology on the growth of Sphagnum fallax, Sphagnum capillifolium and Sphagnum papillosum and greenhouse gas fluxes from moss–peat mesocosms. Elevated CO2 levels increased Sphagnum height and dry weight but the magnitude of the response differed among species. The most responsive species, S. fallax, yielded the most biomass compared to S. papillosum and S. capillifolium. Water levels and the CO2 treatment were found to interact, with the highest water level (1 cm below the surface) seeing the largest increase in dry weight under eCO2 compared to ambient (400 ppm) concentrations. Initially, CO2 flux rates were similar between CO2 treatments. After week 9 there was a consistent three-fold increase of the CO2 sink strength under eCO2. At the end of the experiment, S. papillosum and S. fallax were greater sinks of CO2 than S. capillifolium and the ? 7 cm water level treatment showed the strongest CO2 sink strength. The mesocosms were net sources of CH4 but the source strength varied with species, specifically S. fallax produced more CH4 than S. papillosum and S. capillifolium. Our findings demonstrate the importance of species selection on the outcomes of peatland restoration with regards to Sphagnum’s growth and GHG exchange.  相似文献   

7.
In Arabidopsis, EXPORTIN1A (HIT2/XPO1A) and EXPORTIN1B (XPO1B) mediate the translocation of nuclear export sequence (NES)-bearing proteins from nucleus to cytoplasm. However, a mutation in HIT2/XPO1A but not in XPO1B induces sensitivity to high irradiance (HI). Arabidopsis thaliana heat stress elements A4a and A5 (AtHsfA4a and AtHsfA5) are involved in plant responses to HI and possess NESs; therefore, their nucleo-cytoplasmic partitioning was analyzed. In wild-type and xpo1b mutant cells, AtHsfA4a normally remained in the cytoplasm but became concentrated in the nucleus following exposure to HI, whereas AtHsfA5 was constitutively distributed in both cytoplasm and nucleus. However, in hit2/xpo1a mutant, AtHsfA4a and AtHsfA5 were always confined to the nucleus, regardless of the irradiance. Although AtHsfA4a can enhance the ability of plants to scavenge H2O2, and AtHsfA5 is a repressor of AtHsfA4a, athsfa5 but not athsfa4a mutant plants exhibited HI sensitivity. Additionally, athsfa4a plants expressing AtHsfA4aΔNES were sensitive to HI, but athsfa5 plants expressing AtHsfA5ΔNES were not. Meanwhile, hit2/athsfa4a double mutant was more tolerant to HI than hit2. These results indicate that both AtHsfA4a and AtHsfA5 were HIT2/XPO1A-specific substrates. Long-term accumulation of AtHsfA4a contributed to the hit2 HI-sensitive phenotype independent of the scavenging ability of H2O2, and the presence of AtHsfA5 could mitigate this adverse effect.  相似文献   

8.
Pistachio is a tree of the arid and semi-arid regions where salinity and boron (B) toxicity can be major environmental stresses. In this study, individual and combined effects of different concentrations of NaCl (0, 800, 1600, 2400 and 3200 mg kg?1 soil) and B (0, 2.5, 5.0, 10.0 and 20.0 mg kg?1 soil) were studied on growth, gas-exchange and mineral composition of pistachio seedlings for a duration of 120 days. Excess amounts of salinity (> 1600 mg NaCl kg?1 soil) and B (20.0 mg kg?1 soil) significantly reduced the plant growth and CO2 assimilation, which was associated with accumulation of Na, Cl and B in leaves. There was also a decline in cell membrane stability index (MSI). Reduced stomatal conductance (g s) was the primary cause of inhibition of photosynthesis rate (P N) under mild to moderate salinity. However, under severe salt stress and B toxicity, non-stomatal effects contributed to the inhibition of CO2 assimilation in addition to the decline in g s value. Application of 5.0–10.0 mg B kg?1 soil significantly improved the plant growth and P N and also recovered the MSI as countermeasures against salt stress. These observations were related to the role of B in cell membrane structure and functioning which reduced the concentration of toxic ions in the leaves. However, cell membrane damages and chlorophyll loss in plants affected by salt were observed to be exacerbated when excess amounts of B were present. In conclusion, the results revealed that optimizing the B nutrition can improve the performance of pistachio seedlings under salt stress, and NaCl also showed a mitigating effect on B toxicity if its concentration in the soil is kept under the plant salt tolerance threshold.  相似文献   

9.
Stomatal conductance (g s) of mature trees exposed to elevated CO2 concentrations was examined in a diverse deciduous forest stand in NW Switzerland. Measurements of g s were carried out on upper canopy foliage before noon, over four growing seasons, including an exceptionally dry summer (2003). Across all species reductions in stomatal conductance were smaller than 25% most likely around 10%, with much variation among species and trees. Given the large heterogeneity in light conditions within a tree crown, this signal was not statistically significant, but the responses within species were surprisingly consistent throughout the study period. Except during a severe drought, stomatal conductance was always lower in trees of Carpinus betulus exposed to elevated CO2 compared to Carpinus trees in ambient air, but the difference was only statistically significant on 2 out of 15 days. In contrast, stomatal responses in Fagus sylvatica and Quercus petraea varied around zero with no consistent trend in relation to CO2 treatment. During the 2003 drought in the third treatment year, the CO2 effect became reversed in Carpinus, resulting in higher g s in trees exposed to elevated CO2 compared to control trees, most likely due to better water supply because of the previous soil water savings. This was supported by less negative predawn leaf water potential in CO2 enriched Carpinus trees, indicating an improved water status. These findings illustrate (1) smaller than expected CO2-effects on stomata of mature deciduous forest trees, and (2) the possibility of soil moisture feedback on canopy water relations under elevated CO2.  相似文献   

10.
Under CO2-limited conditions such as during stomatal closure, photorespiration is suggested to act as a sink for excess light energy and protect photosystem I (PSI) by oxidizing its reaction center chlorophyll P700. In this study, this issue was directly examined with rice (Oryza sativa L.) plants via genetic manipulation of the amount of Rubisco, which can be a limiting factor for photorespiration. At low [CO2] of 5 Pa that mimicked stomatal closure condition, the activity of photorespiration in transgenic plants with decreased Rubisco content (RBCS-antisense plants) markedly decreased, whereas the activity in transgenic plants with overproduction of Rubisco (RBCS-sense plants) was similar to that in wild-type plants. Oxidation of P700 was enhanced at [CO2] of 5 Pa in wild-type and RBCS-sense plants. PSI was not damaged by excess light stress induced by repetitive saturated pulse-light (rSP) in the presence of strong steady-state light. On the other hand, P700 was strongly reduced in RBCS-antisense plants at [CO2] of 5 Pa. PSI was also damaged by rSP illumination. These results indicate that oxidation of P700 and the robustness of PSI against excess light stress are hampered by the decreased activity of photorespiration as a result of genetic manipulation of Rubisco content. It is also suggested that overproduction of Rubisco does not enhance photorespiration as well as CO2 assimilation probably due to partial deactivation of Rubisco.  相似文献   

11.
Sixty-eight bacterial cultures were isolated from 5 archaeological soils in Egypt. It is necessary to characterize bacteria from ancient temples to develop protection programs for such archaeological places. Purified bacterial cultures were then tested for their capability to inhibit some multi-drug resistant (MDR) pathogenic bacteria including Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli and Klebsiella pneumoniae. Among the most active 10 antibacterial isolates, only one isolate designated as S5I4 was selected, characterized and identified as belonging to Bacillus amyloliquefaciens. The strain identification was confirmed by amplification of its 16S rRNA gene. The partial nucleotide sequence of the amplified 16S rRNA gene of the tested strain was submitted in GenBank with accession number AB813716. The physical and nutritional parameters were optimized to improve the production of antimicrobial agents by the B. amyloliquefaciens S5I4. The maximum antagonistic effect of this strain against the tested MDR pathogenic bacteria was achieved in presence of 1% galactose and 0.5% yeast extract at 37°C and pH 7.0 after 48 h incubation. The antibacterial compounds of B. amyloliquefaciens S5I4 were extracted, purified and characterized using spectroscopic analysis (IR, UV, proton NMR and MS). The compound having inhibitory activity was identified as butanedioic acid, octadecyl,1(1carboxy1methylethyl) 4octyl ester.  相似文献   

12.
A magnetophoretic harvesting agent, a polypyrrole/Fe3O4 magnetic nanocomposite, is proposed as a cost and energy efficient alternative to recover biomass of the microalgae Botryococcus braunii, Chlorella protothecoides, and Chlorella vulgaris from their culture media. The maximal recovery efficiency reached almost 99 % for B. braunii, 92.4 % for C. protothecoides, and 90.8 % for C. vulgaris. The maximum adsorption capacity (Q 0) of the magnetic nanocomposite for B. braunii (63.49 mg dry biomass mg?1 PPy/Fe3O4) was higher than that for C. protothecoides (43.91 mg dry biomass mg?1 PPy/Fe3O4) and C. vulgaris (39.98 mg dry biomass mg?1 PPy/Fe3O4). The highest harvesting efficiency for all the studied microalgae were at pH 10.0, and measurement of zeta-potential confirmed that the flocculation was induced by charge neutralization. This study showed that polypyrrole/Fe3O4 can be a promising flocculant due to its high efficacy, low dose requirements, short settling time, its integrity with cells, and with great potential for saving energy because of its recyclability.  相似文献   

13.
As one of the promising species of microalgae for biofuel production, Chlorella vulgaris CS-42 was cultivated phototrophically in two cylindrical photobioreactors with aeration of 5 % (v/v) CO2 or air for 13 days to evaluate the effects of CO2 supplementation on biomass, CO2 fixation performance, and biochemical content. Significant increases of specific growth rate and total carbon content in biomass resulting in a higher CO2 fixation rate were found with 5 % CO2. The maximum biomass concentration, carbohydrate and fatty acid contents with 5 % CO2 were significantly higher than those with air, while carbohydrate biosynthesis was most affected as compared to other biochemical components. Cytomic analysis revealed a rapid accumulation of neutral lipid in the late growth phase with more lipid bodies visualized by confocal laser scanning microscopy (CLSM), when nitrate consumption was accelerated with CO2 supplementation. Gas chromatography mass spectrometry (GC-MS) analysis indicated that 5 % CO2 favored the formation of C18:2, which led to a decrease in the degree of lipid unsaturation (DLU). These results proved that CO2 supplementation was one of the most efficient methods to significantly prompt the growth of microalgae and increase the C/N ratio in the medium, which in turn regulated the carbon metabolic flux to enhance neutral lipid and fatty acid production in C. vulgaris.  相似文献   

14.
Microalgal-bacterial processes represent a sustainable and cost-effective biotechnology able to promote efficient wastewater treatment, including natural pathogen removal (disinfection), as well as being able to perform CO2 uptake and biogas upgrading. In this context, the influence of CO2 supply from a synthetic gas mixture (30% v/v CO2) on the removal of pathogens (Pseudomonas, enterococci, and Escherichia coli) and total coliforms during secondary domestic wastewater treatment by a microalgal-bacterial symbiosis in a 180-L high-rate algal pond (HRAP) was investigated. The supply of CO2 in the HRAP positively influenced the Pseudomonas aeruginosa removal, with the removal efficiency increasing from 97.4% (1.6 log) to 99.6% (2.5 log) without and with CO2 supply, respectively. Likewise, the total coliform removal efficiency rose from 88.7% (1.1 log) to 99.4% (2.8 log). On the other hand, the effect of CO2 supply on enterococci (99.7% and 2.6 log) and Escherichia coli (98.6% and 2.2 log) removal was negligible.  相似文献   

15.
We studied growth and photosynthesis of cucumber (Cucumis sativus) seedlings under two vapor-pressure deficit levels (VPD; 0.4 and 3.0 kPa), two salinity levels (0 mM and 34 mM NaCl), and two CO2 concentrations ([CO2]; 400 and 1,000 μmol mol–1). Relative growth rate (RGR) decreased with increasing VPD, but the causal factor differed between salinity levels and CO2 concentrations. Under ambient [CO2], RGR decreased with increasing VPD at low salinity mainly due to decreased leaf area ratio (LAR), and decreased net assimilation rate (NAR) at high salinity. The decrease in intercellular [CO2] (Ci) with decreasing stomatal conductance caused by high VPD did not significantly limit net photosynthetic rate (PN) at low salinity, but PN was potentially limited by Ci at high salinity. At high [CO2], high VPD reduced LAR, but did not affect NAR. This is because the decrease in Ci occurred where slope of PNCi curve was almost flat.  相似文献   

16.
Density functional theory (B3LYP, B3LYP-D2 and wB97XD functionals) was used in finite models of zigzag carbon nanotubes (CNT), (n,0)×k with n?=?6–9 and k?=?2–4, to systematically investigate the effects of size on their structural and electronic properties. We found that the ratio between the length (L t) and the diameter (d t) of the pristine CNT has to be larger than 2, i.e., L t/d t?>?2, in order to provide the observed experimental trends of C=C bond distances, as well as to maintain the atomic charges nearly constant and zero around the center of the tube. Therefore, the concepts of useful length and volume were developed and tested for the encapsulation process of HCN and C2H2 into CNTs. The energies involved in these processes, as well as the changes in molecular structure and electronic properties of the dopants and the CNTs are discussed and rationalized by the amount of charge transferred between dopant and CNT.
Graphical Abstract Illustration of zigzag CNT length and diameter ratio in order to represent C=C bond experimental trend
  相似文献   

17.
Although plant performance under elevated CO2 (EC) and drought has been extensively studied, little is known about the leaf traits and photosynthetic performance of Stipa bungeana under EC and a water deficiency gradient. In order to investigate the effects of EC, watering, and their combination, S. bungeana seedlings were exposed to two CO2 regimes (ambient, CA: 390 ppm; elevated, EC: 550 ppm) and five levels of watering (?30%, ?15%, control, +15%, +30%) from 1 June to 31 August in 2011, where the control water level was 240 mm. Gas exchange and leaf traits were measured after 90-d treatments. Gas-exchange characteristics, measured at the growth CA, indicated that EC significantly decreased the net photosynthetic rate (P N), water-use efficiency, nitrogen concentration based on mass, chlorophyll and malondialdehyde (MDA) content, while increased stomatal conductance (g s), intercellular CO2 concentration (C i), dark respiration, photorespiration, carbon concentration based on mass, C/N ratio, and leaf water potential. Compared to the effect of EC, watering showed an opposite trend only in case of P N. The combination of both factors showed little influence on these physiological indicators, except for g s, C i, and MDA content. Photosynthetic acclimation to EC was attributed to the N limitation, C sink/source imbalance, and the decline of photosynthetic activity. The watering regulated photosynthesis through both stomatal and nonstomatal mechanisms. Our study also revealed that the effects of EC on photosynthesis were larger than those on respiration and did not compensate for the adverse effects of drought, suggesting that a future warm and dry climate might be unfavorable to S. bungeana. However, the depression of the growth of S. bungeana caused by EC was time-dependent at a smaller temporal scale.  相似文献   

18.
The complete set of 86 isolated-pentagon-rule (IPR) isomers of C92 has been described by the SAM1 quantum-chemical method, and their energetics checked by density functional theory at the B3LYP/6-31G* level. Although the lowest-energy cage is not identical in both approaches, it still exhibits D 2 symmetry in both cases. As energetics themselves cannot produce reliable relative stabilities at high temperatures, entropy terms are also computed and the relative-stability problem is treated entirely in terms of the Gibbs function. The lowest-energy structure is not the most populated isomer at higher temperatures – it is replaced by a D 3 structure. Further stability interchanges are possible at very high temperatures, when C 3 and C 1 structures are also important. There is a partial agreement of the computations with available observed data.  相似文献   

19.
In this study, we questioned whether ground-level ozone (O3) induces hormesis in Japanese larch (Larix kaempferi) and its hybrid F1 (L. gmelinii var. japonica × L. kaempferi). In order to answer the question, we exposed seedlings of both taxa to four O3 treatments [ranging from ≈10 to 60 nmol(O3) mol–1] in open-top chambers for two consecutive growing seasons. We found a hormetic response in maximum photosynthetic rate (PNmax) at 1700 μmol(CO2) mol–1 and maximum rates of carboxylation (Vcmax) and electron transport (Jmax) in both larches. Stimulation of PNmax, Vcmax, and Jmax did not lead to suppressed plant productivity in Japanese larch, which followed a stress-tolerant strategy, but it did lead to suppressed plant productivity in hybrid larch which followed a competitive strategy. These findings are the first to suggest that stimulation of physiological functions by low O3 exposures may have negative consequences for larch reproduction.  相似文献   

20.

Background

In recent years, New Delhi metallo-beta-lactamases 1 (bla NDM-1) has been reported with increasing frequency and become prevalent. The present study was undertaken to investigate the epidemiological dissemination of the bla NDM-1 gene in Enterobacter cloacae isolates at a teaching hospital in Yunnan, China.

Methods

Antimicrobial susceptibility testing was performed using VITEK 2 system and E test gradient strips. The presence of integrons and insertion sequence common region 1 were examined by PCR and sequencing. Clonal relatedness was assessed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. Conjugation experiments and Southern blot hybridization were performed to determine the transferability of plasmids.

Results

Ten E. cloacae isolates and their Escherichia coli transconjugants were exhibited similar resistant patterns to carbapenems, cephalosporins and penicillins. 8 (80%) of E. cloacae isolates carried class 1 integron and 1 (12.5%) carried class 2 integron. Integron variable regions harbored the genes which encoded resistance to aminoglycosides (aadA1, aadA2, aadA5, aadB, aac(6′)-Ib-cr), sulfamethoxazole/trimethoprim (dfrA17, dfrA12, dfrA15) and Streptozotocin (sat2). Six E. cloacae isolates belonged to ST74 and exhibited highly similar PFGE patterns. Each isolate shared an identical plasmid with ~33.3 kb size that carried the bla NDM-1 gene, except T3 strain, of which the bla NDM-1 gene was located on a ~50 kb plasmid.

Conclusions

Our findings suggested that plasmid was able to contribute to the dissemination of bla NDM-1. Hence, more attention should be devoted to monitor the dissemination of the bla NDM-1 gene due to its horizontal transfer via plasmid. In addition, nosocomial surveillance system should actively monitor the potential endemic clone of ST74 to prevent their further spread.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号