首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dopamine receptors have been found in certain populations of non-neuronal cells in the brain, viz., discrete areas of ciliated ependyma and the ependymal cells of the choroid plexus. We have studied the presence of both tyrosine-hydroxylase-immunoreactive nerve fibers and dopamine receptors in the subcommissural organ (SCO), an ependymal brain gland that is located in the roof of the third ventricle and that secretes, into the cerebrospinal fluid, glycoproteins that aggregate to form Reissners fiber (RF). Antibodies against D2, D3, D4, and D5 dopamine receptors were used in immunoblots of bovine striatum, fresh SCO, and organ-cultured SCO, and in immunocytochemistry of the bovine, rat, and mouse SCO. Only a few tyrosine-hydroxylase fibers appeared to reach the SCO. However, virtually all the secretory ependymal and hypendymal cells of the SCO immunoreacted with antibodies against D2, D4, and D5 receptors, with the last-mentioned rendering the strongest reaction, especially at the ventricular cell pole of the secretory ependymocytes, suggesting that dopamine might reach the SCO via the cerebrospinal fluid. The antibodies against the four subtypes of receptors revealed corresponding bands in immunoblots of striatum and fresh SCO. Although the cultured SCO displayed dopamine receptors, dopamine had no apparent effect on the expression of the SCO-spondin gene/protein or on the release of RF-glycoproteins (SCO-spondin included) by SCO explants, suggesting that dopamine affects the function(s) of the SCO differently from the secretion of RF-glycoproteins.Financial support was provided by grants PI 030756 and Red CIEN, Instituto de Salud Carlos III, Spain (to J.M.P.F.), and 1030265 from Fondecyt, Chile (to E.M.R.)  相似文献   

2.
An experimental study has been carried out on the stability of adenine (one of the five nucleic acid bases) under hydrothermal conditions. The experiments were performed in sealed autoclaves at 300 degrees C under fugacities of CO(2), N(2) and H(2) supposedly representative of those in marine hydrothermal systems on the early Earth. The composition of the gas phase was obtained from the degradation of oxalic acid, sodium nitrite and ammonium chloride, and the oxidation of metallic iron. The results of the experiments indicate that after 200 h, adenine is still present in detectable concentration in the aqueous phase. In fact, the concentration of adenine does not seem to be decreasing after approximately 24 h, which suggests that an equilibrium state may have been established with the inorganic constituents of the hydrothermal fluid. Such a conclusion is corroborated by independent thermodynamic calculations.  相似文献   

3.
The aim of this study is to estimate emissions of greenhouse gases CO2, CH4 and N2O, and the effects of drainage and peat extraction on these processes, in Estonian transitional fens and ombrotrophic bogs. Closed-chamber-based sampling lasted from January to December 2009 in nine peatlands in Estonia, covering areas with different land-use practices: natural (four study sites), drained (six sites), abandoned peat mining (five sites) and active peat mining areas (five sites). Median values of soil CO2 efflux were 1,509, 1,921, 2,845 and 1,741 kg CO2-C ha?1 year?1 from natural, drained, abandoned and active mining areas, respectively. Emission of CH4-C (median values) was 85.2, 23.7, 0.07 and 0.12 kg ha?1 year?1, and N2O-N ?0.05, ?0.01, 0.18 and 0.19 kg ha?1 year?1, respectively. There were significantly higher emissions of CO2 and N2O from abandoned and active peat mining areas, whereas CH4 emissions were significantly higher in natural and drained areas. Significant Spearman rank correlation was found between soil temperature and CO2 flux at all sites, and CH4 flux with high water level at natural and drained areas. Significant increase in CH4 flux was detected for groundwater levels above 30 cm.  相似文献   

4.

Introduction

The rising atmospheric CO2 level is continuously driving the dissolution of more CO2 into the oceans, and some emission scenarios project that the surface waters may reach 1000 μatm by the end of the century. It is not known if fish can detect moderately elevated CO2 levels, and if they avoid areas with high CO2. If so, avoidance behaviour to water with high CO2 could affect movement patterns and migrations of fish in the future. It is also being increasingly recognized that fish behaviour can be altered by exposure to CO2. Therefore this study investigated how long-term exposure to elevated pCO2 affects predator avoidance and CO2 avoidance in juvenile Atlantic cod (Gadus morhua). The fish were exposed to control water or CO2-enriched water (1000 μatm) for six weeks before being subjected to tests of behaviour.

Results

Despite long term exposure to elevated pCO2 the cod still strongly avoided the smell of a predator. These data are surprising because several coral reef fish have demonstrated reversal of olfactory responses after CO2 exposure, turning avoidance of predator cues into preference for predator cues. Fish from both treatment groups also demonstrated strong avoidance of CO2 when presented with the choice of control or CO2-acidified water, indicating that habituation to the CO2 sensory stimuli is negligible.

Conclusions

As Atlantic cod maintained normal behavioural responses to olfactory cues, they may be tolerant to CO2-induced behavioural changes. The results also suggest that despite the long-term exposure to CO2-acidified water, the fish still preferred the control water over CO2-acidified water. Therefore, in the future, fish may alter their movements and migrations in search of waters with a lower CO2 content.
  相似文献   

5.
This study examined the effects of carbon dioxide (CO2)-, ozone (O3)-, and genotype-mediated changes in quaking aspen (Populus tremuloides) chemistry on performance of the forest tent caterpillar (Malacosoma disstria) and its dipteran parasitoid (Compsilura concinnata) at the Aspen Free-Air CO2 Enrichment (FACE) site. Parasitized and non-parasitized forest tent caterpillars were reared on two aspen genotypes under elevated levels of CO2 and O3, alone and in combination. Foliage was collected for determination of the chemical composition of leaves fed upon by forest tent caterpillars during the period of endoparasitoid larval development. Elevated CO2 decreased nitrogen levels but had no effect on concentrations of carbon-based compounds. In contrast, elevated O3 decreased nitrogen and phenolic glycoside levels, but increased concentrations of starch and condensed tannins. Foliar chemistry also differed between aspen genotypes. CO2, O3, genotype, and their interactions altered forest tent caterpillar performance, and differentially so between sexes. In general, enriched CO2 had little effect on forest tent caterpillar performance under ambient O3, but reduced performance (for insects on one aspen genotype) under elevated O3. Conversely, elevated O3 improved forest tent caterpillar performance under ambient, but not elevated, CO2. Parasitoid larval survivorship decreased under elevated O3, depending upon levels of CO2 and aspen genotype. Additionally, larval performance and masses of mature female parasitoids differed between aspen genotypes. These results suggest that host-parasitoid interactions in forest systems may be altered by atmospheric conditions anticipated for the future, and that the degree of change may be influenced by plant genotype.  相似文献   

6.
A method for the combined determination of the mycotoxins aflatoxin B1, G1, B2, G2, ochratoxin A and zearalenone in cereals and feed is described. After extraction with acetonitrile/water or methanol/water the cleaning takes place with new combined immunoaffinity clean-up column “AflaOchraZea” by VICAM. When the mycotoxins are determined in different cereals with this new type of clean-up column low detection limits and high recovery rates can be reached similar to those obtained by using separate immunoaffinity clean-up colums for the said mycotoxins.  相似文献   

7.
Several studies have shown improved soil stability under elevated atmospheric CO2 caused by increased plant and microbial biomass. These studies have not quantified the mechanisms responsible for soil stabilisation or the effect on water relations. The objective of this study was to assess changes in water repellency under elevated CO2. We hypothesised that increased plant biomass will drive an increase in water repellency, either directly or through secondary microbial processes. Barley plants were grown at ambient (360 ppm) and elevated (720 ppm) CO2 concentrations in controlled chambers. Each plant was grown in a separate tube of 1.2 m length constructed from 22 mm depth × 47 mm width plastic conduit trunk and packed with sieved arable soil to 55% porosity. After 10 weeks growth the soil was dried at 40°C before measuring water sorptivity, ethanol sorptivity and repellency at many depths with a 0.14 mm radius microinfiltrometer. This provided a microscale measure of the capacity of soil to rewet after severe drying. At testing roots extended throughout the depth of the soil in the tube. The depth of the measurement had no effect on sorptivity or repellency. A rise in CO2 resulted in a decrease in water sorptivity from 1.13 ± 0.06 (s.e) mm s−1/2 to 1.00 ± 0.05 mm s−1/2 (P < 0.05) and an increase in water repellency from 1.80 ± 0.09 to 2.07 ± 0.08 (P < 0.05). Ethanol sorptivity was not affected by CO2 concentration, suggesting a similar pore structure. Repellency was therefore the primary cause of decreased water sorptivity. The implications will be both positive and negative, with repellency potentially increasing soil stability but also causing patchier wetting of the root-zone.  相似文献   

8.
Current manufacturing of most bulk chemicals through petrochemical routes considerably contributes to common concerns over the depletion of fossil carbon sources and greenhouse gas emissions. Sustainable future production of commodities thus requires the shift to renewable feedstocks in combination with established or newly developed synthesis routes. In this study, the potential of Cupriavidus necator H16 for autotrophic synthesis of the building block chemical 2-hydroxyisobutyric acid (2-HIBA) is evaluated. A novel biosynthetic pathway was implemented by heterologous expression of the 2-hydroxyisobutyryl-coenzyme A (2-HIB-CoA) mutase from Aquincola tertiaricarbonis L108, relying on a main intermediate of strain H16’s C4 overflow metabolism, 3-hydroxybutyryl-CoA. The intention was to direct the latter to 2-HIBA instead or in addition to poly-3-hydroxybutyrate (PHB). Autotrophic growth and 2-HIBA (respectively, PHB) synthesis of wild-type and PHB-negative mutant strains were investigated producing maximum 2-HIBA titers of 3.2 g L?1 and maximum specific 2-HIBA synthesis rates (q 2-HIBA) of about 16 and 175 μmol g?1 h?1, respectively. The obtained specific productivity was the highest reported to date for mutase-dependent 2-HIBA synthesis from heterotrophic and autotrophic substrates. Furthermore, expression of a G protein chaperone (MeaH) in addition to the 2-HIB-CoA mutase subunits yielded improved productivity. Analyzing the inhibition of growth and product synthesis due to substrate availability and product accumulation revealed a strong influence of 2-HIBA, when cells were cultivated at high titers. Nevertheless, the presented results imply that at the time the autotrophic synthesis route is superior to thus far established heterotrophic routes for production of 2-HIBA with C. necator.  相似文献   

9.
The effects of high atmospheric CO2 concentration ([CO2]) on ecosystem processes have been explored using temporal facilities such as open-top-chambers and free-air CO2 enrichment. However, the effects of high [CO2] on soil properties takes decades and may not be captured by short-term experiments. Natural CO2 springs provide a unique opportunity to study the long-term effects of high [CO2]. In this study, we investigated soil properties at a natural CO2 spring. We found that the amounts of total carbon (C) and nitrogen (N) stored in the soil at the high [CO2] site exceeded those in the reference site by 60 and 30%, respectively. The effects of high [CO2] were large in the upper slope position where the canopy openness was high and plants grew faster, but no effects were detected in the lowest position where the canopy openness was lower (half of that at the upper slope position). In contrast, effects of high [CO2] on soil N dynamics, such as N mineralization and nitrification rates, did not exhibit a slope gradient. This suggests that effects of high [CO2] differed among soil stoichiometric characteristics and N dynamics. These complicated effects of high [CO2] imply that the future effects of high [CO2] on ecosystems could vary widely in conjunction with environmental conditions such as light availability and/or topographic conditions.  相似文献   

10.
A controlled environment experiment was conducted to determine the impact of enhanced carbon dioxide and temperature on competition between the C3 grasses Austrodanthonia eriantha and Vulpia myuros. Plants were grown in mixtures and monocultures to compare the responses both with and without an interspecific competitor. Temperature and CO2 were set at current levels (350 ppm CO2; 20 °C day and 10 °C night temperature), in factorial combination with enhanced levels (700 ppm CO2; 23 °C day and 13 °C night temperature). To examine the potential impact of initial seedling size on competition under elevated CO2 and temperature, the two species were combined in mixtures of differing initial sizes. Above-ground growth of all plants was enhanced by increased CO2 and temperature alone, however the combined temperature and CO2 treatment showed a sub-additive effect, where growth was less than expected based on the responses to each factor independently. Austrodanthonia in mixture with Vulpia plants of the same initial size experienced a 27 reduction in growth. Austrodanthonia grown in the presence of an initially larger Vulpia plant experienced a 58 reduction in growth. When the Vulpia plant was initially smaller than Austrodanthonia, growth of the Austrodanthonia was reduced by 16%. The growth of Vulpia appeared to be largely unaffected by the presence of Austrodanthonia. Variation in the CO2 and temperature environment did not affect the pattern of these interspecific interactions, although there was some evidence to suggest that the degree of suppression of Austrodanthonia by Vulpia was less under elevated CO2. These results do not support the initial advantage hypothesis, as Vulpia was always able to suppress Austrodanthonia, regardless of the initial relative sizes of the competitors. Furthermore, the lack of an effect of changing the CO2 or temperature environment on the direction of interspecific competition suggests that the competitiveness of the invasive Vulpia will be minimally affected by changes in atmospheric CO2 concentration or temperature.  相似文献   

11.
The spatial variation of soil greenhouse gas fluxes (GHG; carbon dioxide—CO2, methane—CH4 and nitrous oxide—N2O) remains poorly understood in highly complex ecosystems such as tropical forests. We used 240 individual flux measurements of these three GHGs from different soil types, at three topographical positions and in two extreme hydric conditions in the tropical forests of the Guiana Shield (French Guiana, South America) to (1) test the effect of topographical positions on GHG fluxes and (2) identify the soil characteristics driving flux variation in these nutrient-poor tropical soils. Surprisingly, none of the three GHG flux rates differed with topographical position. CO2 effluxes covaried with soil pH, soil water content (SWC), available nitrogen and total phosphorus. The CH4 fluxes were best explained by variation in SWC, with soils acting as a sink under drier conditions and as a source under wetter conditions. Unexpectedly, our study areas were generally sinks for N2O and N2O fluxes were partly explained by total phosphorus and available nitrogen concentrations. This first study describing the spatial variation of soil fluxes of the three main GHGs measured simultaneously in forests of the Guiana Shield lays the foundation for specific studies of the processes underlying the observed patterns.  相似文献   

12.

Background and aims

Saline and alkali soils severely impact plant growth. Endophyte and plant associations are known to significantly modify plant metabolism. This study reports the effects of a type of endophyte on organic acid (OA) accumulation and ionic balance in rice under Na2CO3 stress.

Methods

Rice seedlings with (E+) and without (E-) endophytic infection were subjected to different levels of Na2CO3 stress (0, 5, 10, 15, and 20 mM) for two weeks. Organic acids and mineral elements in the leaves and roots were determined.

Results

Seedlings with endophytic infection accumulated mainly citrate and fumarate, with some malate and succinate in the leaves. In the roots, accumulation of malate and fumarate was enhanced significantly by endophytic infection, while less citrate and succinate was accumulated under Na2CO3 stress, which suggested that leaves and roots use different mechanisms to control OA metabolism. Endophytes reduced the total Na and Na:K ratios, but increased ST values, the percent changes of other measured nutrients, Chl content, and dry weight per plant under Na2CO3 stress.

Conclusions

Endophytic infection plays a key role in maintaining plant growth by improving nutrient uptake and adjusting OA accumulation under Na2CO3 stress. The application of endophytes can enhance the resistance of rice to salinity.
  相似文献   

13.
Profiles of subsurface soil CO2 concentration, soil temperature, and soil moisture, and throughfall were measured continuously during the years 2005 and 2006 in 16 locations at the free air CO2 enrichment facility situated within a temperate loblolly pine (Pinus taeda L.) stand. Sampling at these locations followed a 4 by 4 replicated experimental design comprised of two atmospheric CO2 concentration levels (ambient [CO2]a, ambient + 200 ppmv, [CO2]e) and two soil nitrogen (N) deposition levels (ambient, ambient + fertilization at 11.2 gN m−2 year−1). The combination of these measurements permitted indirect estimation of belowground CO2 production and flux profiles in the mineral soil. Adjacent to the soil CO2 profiles, direct (chamber-based) measurements of CO2 fluxes from the soil–litter complex were simultaneously conducted using the automated carbon efflux system. Based on the measured soil CO2 profiles, neither [CO2]e nor N fertilization had a statistically significant effect on seasonal soil CO2, CO2 production, and effluxes from the mineral soil over the study period. Soil moisture and temperature had different effects on CO2 concentration depending on the depth. Variations in CO2 were mostly explained by soil temperature at deeper soil layers, while water content was an important driver at the surface (within the first 10 cm), where CO2 pulses were induced by rainfall events. The soil effluxes were equal to the CO2 production for most of the time, suggesting that the site reached near steady-state conditions. The fluxes estimated from the CO2 profiles were highly correlated to the direct measurements when the soil was neither very dry nor very wet. This suggests that a better parameterization of the soil CO2 diffusivity is required for these soil moisture extremes.  相似文献   

14.
Pistachio is a tree of the arid and semi-arid regions where salinity and boron (B) toxicity can be major environmental stresses. In this study, individual and combined effects of different concentrations of NaCl (0, 800, 1600, 2400 and 3200 mg kg?1 soil) and B (0, 2.5, 5.0, 10.0 and 20.0 mg kg?1 soil) were studied on growth, gas-exchange and mineral composition of pistachio seedlings for a duration of 120 days. Excess amounts of salinity (> 1600 mg NaCl kg?1 soil) and B (20.0 mg kg?1 soil) significantly reduced the plant growth and CO2 assimilation, which was associated with accumulation of Na, Cl and B in leaves. There was also a decline in cell membrane stability index (MSI). Reduced stomatal conductance (g s) was the primary cause of inhibition of photosynthesis rate (P N) under mild to moderate salinity. However, under severe salt stress and B toxicity, non-stomatal effects contributed to the inhibition of CO2 assimilation in addition to the decline in g s value. Application of 5.0–10.0 mg B kg?1 soil significantly improved the plant growth and P N and also recovered the MSI as countermeasures against salt stress. These observations were related to the role of B in cell membrane structure and functioning which reduced the concentration of toxic ions in the leaves. However, cell membrane damages and chlorophyll loss in plants affected by salt were observed to be exacerbated when excess amounts of B were present. In conclusion, the results revealed that optimizing the B nutrition can improve the performance of pistachio seedlings under salt stress, and NaCl also showed a mitigating effect on B toxicity if its concentration in the soil is kept under the plant salt tolerance threshold.  相似文献   

15.
An experimental study to estimate the effect of clear-cutting on CO2 emission from the soil surface was performed using the chamber method. For field measurements, several experimental plots within the clear-cut with different degrees of damage of the upper organic soil layer and different amounts of litter and logging residue on the surface were selected. Soil CO2 fluxes were simultaneously measured both on the clear-cutting plots and on two plots within the spruce forest stand located close to the clear-cut area. The results show a significant seasonal and diurnal variability of soil CO2 emission. It was found that the soil respiration rate varies significantly among plots and depends on the damage to the upper soil layer and the availability of litter and logging residue on the soil surface. It was found that the rate of CO2 emission from soil surface is strongly dependent on the air and soil temperature and moisture of the upper soil layer. Different rates of soil respiration are also revealed on the plots located at different distances from tree trunks within the control forest stand.  相似文献   

16.
Using a radiogasometric method the rates of photorespiratory and respiratory decarboxylations of primary and stored photosynthates in the leaves of two groups of C3 species, differing in the ability of starch accumulation, were determined. One group included starch-accumulating (SA) species with rates of starch synthesis on the average 38 % the rate of photosynthesis [Solanum tuberosum L., Arabidopsis thaliana (L.) Heynh, Helianthus annuus L., and Plantago lanceolata L.]. The second group represented starch-deficient (SD) species with rates of starch synthesis less than 8 % the rate of photosynthesis (Secale cereale L., Triticum aestivum L., Hordeum vulgare L., and Poa trivialis L.). In SA species the rate of respiration in the dark was significantly higher than in SD species. No differences were found in the rates of photosynthesis, photorespiration, and respiration under irradiation. Thus, the degree of inhibition of respiration by irradiation was in SA species higher than in SD species. It is concluded that starch does not provide substrates for respiratory and photorespiratory decarboxylations in irradiated photosynthesizing leaves.  相似文献   

17.
A survey to evaluate the contamination level of total fumonisins in maize-based foodstuffs, maize and feed from Indonesia is described. The analyses were carried out by enzyme-linked immunosorbent assay (ELISA). Samples were collected from local retail stores around Yogyakarta, Indonesia between February and May 2001. The 101 samples were classified into six categories, i.e. industrially-produced food (n=24), products of small food manufacturers (n=17), maize flour (n=4), maize for food (n=9), maize for feed (n17), and formulated feed (n30). Control of the method showed that the detection limit was 8.7 μg/kg and repeatability is shown by relative standard deviation (RSD) of analyses of contaminated maize (n=5) of 10 %. Results of analyses indicate that 80 samples analysed were contaminated over a large range from 10.0-3307 pg/kg, and the concentration of fumonisins depended on the type of sample. Of four samples of maize flour, none were contaminated (below detection limit). Of 24 samples of industrially produced food, 14 were contaminated in the range 22.8 - 105 μg/kg and 18 of 19 food samples from small manufacturers were contaminated ranging from 12.9 to 234 μg/kg. The highest contamination was observed in maize samples: six of ten samples of maize for food were contaminated between 68.0 - 2471 μg/kg and 16 of 17 samples for feed contained fumonisins over a large range from 17.6 to 3306 μg/kg.  相似文献   

18.
19.
Studying the interaction of some atmospheric gases (H2O, HCN, NH3, SO3 and H2S) with 3PT oligomers is important in the development of polymeric sensors for gas detection. In the present study, we studied the relaxed geometries, interaction energies, charge analysis, HOMO–LUMO orbital analysis, and UV–vis spectra of all interacted systems using first-principles density functional theory (DFT). All these analyses indicated the potential of polythiophene as an inexpensive polymeric sensor for the analytes mentioned. Interaction energy values of ?19.90, ?19.66, ?14.01, ?8.70, and ?4.76 kJ mol?1 were achieved for adsorption of SO3, H2O, NH3, HCN, and H2S on 3PT, respectively. Consequently, clarification of their physical parameters became the major focus of this study.  相似文献   

20.
Plant communities around natural CO2 springs have been exposed to elevated CO2 levels over many generations and give us a unique opportunity to investigate the effects of long-term elevated CO2 levels on wild plants. We searched for natural CO2 springs in cool temperate climate regions in Japan and found three springs that were suitable for studying long-term responses of plants to elevated levels of CO2: Ryuzin-numa, Yuno-kawa and Nyuu. At these CO2 springs, the surrounding air was at high CO2 concentration with no toxic gas emissions throughout the growth season, and there was natural vegetation around the springs. At each site, high-CO2 (HC) and low-CO2 (LC) plots were established, and three dominant species at the shrub layers were used for physiological analyses. Although the microenvironments were different among the springs, dicotyledonous species growing at the HC plots tended to have more starch and less nitrogen per unit dry mass in the leaves than those growing at the LC plots. In contrast, monocotyledonous species growing in the HC and LC plots had similar starch and nitrogen concentrations. Photosynthetic rates at the mean growth CO2 concentration were higher in HC plants than LC plants, but photosynthetic rates at a common CO2 concentration were lower in HC plants. Efficiency of water and nitrogen use of leaves at growth CO2 concentration was greatly increased in HC plants. These results suggest that natural plants growing in elevated CO2 levels under cool temperate climate conditions have down-regulated their photosynthetic capacity but that they increased photosynthetic rates and resource use efficiencies due to the direct effect of elevated CO2 concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号