首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosome‐centric Human Proteome Project aims at identifying and characterizing protein products encoded from all human protein‐coding genes. As of early 2017, 19 837 protein‐coding genes have been annotated in the neXtProt database including 2691 missing proteins that have never been identified by mass spectrometry. Missing proteins may be low abundant in many cell types or expressed only in a few cell types in human body such as sperms in testis. In this study, we performed expression proteomics of two near‐haploid cell types such as HAP1 and KBM‐7 to hunt for missing proteins. Proteomes from the two haploid cell lines were analyzed on an LTQ Orbitrap Velos, producing a total of 200 raw mass spectrometry files. After applying 1% false discovery rates at both levels of peptide‐spectrum matches and proteins, more than 10 000 proteins were identified from HAP1 and KBM‐7, resulting in the identification of nine missing proteins. Next, unmatched spectra were searched against protein databases translated in three frames from noncoding RNAs derived from RNA‐Seq data, resulting in six novel protein‐coding regions after careful manual inspection. This study demonstrates that expression proteomics coupled to proteogenomic analysis can be employed to identify many annotated and unannotated missing proteins.  相似文献   

2.
At the 12th Annual HUPO World Congress of Proteomics in Japan, the Human Proteome Project (HPP) presented 16 scientific workshop sessions. Here we summarize highlights of ten workshops from the Biology and Disease‐driven HPP (B/D‐HPP) teams and three from the HPP Resource Pillars. Highlights of the three Chromosome‐centric HPP sessions appeared in the many articles of the 2014 C‐HPP special issue of the Journal of Proteome Research 1 .  相似文献   

3.
4.
Myelination of the CNS is performed by oligodendrocytes (OLs), which have been implicated in brain disorders, such as multiple sclerosis and schizophrenia. We have used the human oligodendroglial cell line MO3.13 to establish an OL reference proteome database. Proteins were prefractionationated by SDS‐PAGE and after in‐gel digestion subjected to nanoflow LC‐MS analysis. Approximately 11 600 unique peptides were identified and, after stringent filtering, resulted in 2290 proteins representing nine distinct biological processes and various molecular classes and functions. OL‐specific proteins, such as myelin basic protein (MBP) and 2′,3′‐cyclic nucleotide 3′‐phosphodiesterase (CNP), as well as other proteins involved in multiple sclerosis and schizophrenia were also identified and are discussed. Proteins of this dataset have also been classified according to their chromosomal origin for providing useful data to the Chromosome‐centric Human Proteome Project (C‐HPP). Given the importance of OLs in the etiology of demyelinating and oligodendrogial disorders, the MO3.13 proteome database is a valuable data resource. The MS proteomics data have been deposited to the ProteomeXchange with identifier PXD000263 ( http://proteomecentral.proteomexchange.org/dataset/PXD000263 ).  相似文献   

5.
There are an estimated 285 million people with visual impairment worldwide, of whom 39 million are blind. The pathogenesis of many eye diseases remains poorly understood. The human eye is currently an emerging proteome that may provide key insight into the biological pathways of disease. We review proteomic investigations of the human eye and present a catalogue of 4842 nonredundant proteins identified in human eye tissues and biofluids to date. We highlight the need to identify new biomarkers for eye diseases using proteomics. Recent advances in proteomics do now allow the identification of hundreds to thousands of proteins in tissues and fluids, characterization of various PTMs and simultaneous quantification of multiple proteins. To facilitate proteomic studies of the eye, the Human Eye Proteome Project (HEPP) was organized in September 2012. The HEPP is one of the most recent components of the Biology/Disease‐driven Human Proteome Project (B/D‐HPP) whose overarching goal is to support the broad application of state‐of‐the‐art measurements of proteins and proteomes by life scientists studying the molecular mechanisms of biological processes and human disease. The large repertoire of investigative proteomic tools has great potential to transform vision science and enhance understanding of physiology and disease processes that affect sight.  相似文献   

6.
The Human Proteome Organization has several major collaborative research initiatives, including the Plasma Proteome Project. A major feature of the HUPO World Congress in Munich in August 2005 was the release of the special issue of PROTEOMICS with 28 articles from the pilot phase of the Plasma Proteome Project. An open Workshop and a presentation in the closing plenary session of the congress focused on next phases for the Plasma Proteome Project.  相似文献   

7.
Omenn GS 《Proteomics》2004,4(5):1235-1240
A comprehensive, systematic characterization of cirolating proteins in health and disease will greatly facilitate development of biomarkers for prevention, diagnosis, and therapy of cancers and other diseases. The Human Proteome Organization Plasma Proteome Project pilot phase aims to (1) compare the advantages and limitations of many technology platforms; (2) contrast reference specimens of human plasma (ethylenediaminetetra acetic acid, heparin, citrate-anticoagulated) and serum, in terms of numbers of proteins identified and any interferences with various technology platforms; and (3) create a global knowledge base/data repository.  相似文献   

8.
We describe an experimental approach for direct molecular fishing of prey protein on the surface of two types of paramagnetic particles (PMP) having different size and composition. Human microsomal cytochrome b5 (b5) and its known partner human cytochrome P450 3A5 (CYP3A5) were used as bait and prey proteins, respectively. For assessing the level of unspecific binding of background proteins, α‐fetoprotein (aFP) was used. SPR measurements were applied for quantitative analysis of trapped proteins (CYP3A5 and aFP) after fishing on PMP. It was shown that the described approach of molecular fishing on micro‐PMP provides enough prey proteins for LC‐MS/MS identification and SPR validation, so this approach can be used for discovery of new protein–protein interactions in the framework of Human Proteome Project.  相似文献   

9.
Gilbert S. Omenn 《Proteomics》2013,13(16):2375-2376
The human eye proteome is the latest addition to the HUPO Human Proteome Project (HPP). Semba et al. (The Human Eye Proteome Project: Perspectives on an emerging proteome. Proteomics 2013, 13, 2500–2511) establish a provisional baseline for the proteomes of the many anatomical compartments of the eye, based on literature review. As part of the Biology and Disease‐driven HPP, they and their colleagues will generate fresh data and meet the stringent guidelines for protein identification and characterization as established by the HPP.  相似文献   

10.
11.
The objective of the international Chromosome-Centric Human Proteome Project (C-HPP) is to map and annotate all proteins encoded by the genes on each human chromosome. The C-HPP consortium was established to organize a collaborative network among the research teams responsible for protein mapping of individual chromosomes and to identify compelling biological and genetic mechanisms influencing colocated genes and their protein products. The C-HPP aims to foster the development of proteome analysis and integration of the findings from related molecular -omics technology platforms through collaborations among universities, industries, and private research groups. The C-HPP consortium leadership has elicited broad input for standard guidelines to manage these international efforts more efficiently by mobilizing existing resources and collaborative networks. The C-HPP guidelines set out the collaborative consensus of the C-HPP teams, introduce topics associated with experimental approaches, data production, quality control, treatment, and transparency of data, governance of the consortium, and collaborative benefits. A companion approach for the Biology and Disease-Driven HPP (B/D-HPP) component of the Human Proteome Project is currently being organized, building upon the Human Proteome Organization's organ-based and biofluid-based initiatives (www.hupo.org/research). The common application of these guidelines in the participating laboratories is expected to facilitate the goal of a comprehensive analysis of the human proteome.  相似文献   

12.
Proteomics has now published a series of Dataset Briefs on the EyeOme from the HUPO Human Proteome Project with high‐quality analyses of the proteomes of these compartments of the human eye: retina, iris, ciliary body, retinal pigment epithelium/choroid, retrobulbar optic nerve, and sclera, with 3436, 2929, 2867, 2755, 2711, and 1945 proteins, respectively. These proteomics resources represent a useful starting point for a broad range of research aimed at developing preventive and therapeutic interventions for the various causes of blindness.  相似文献   

13.
Introduction: The technological and scientific progress performed in the Human Proteome Project (HPP) has provided to the scientific community a new set of experimental and bioinformatic methods in the challenging field of shotgun and SRM/MRM-based Proteomics. The requirements for a protein to be considered experimentally validated are now well-established, and the information about the human proteome is available in the neXtProt database, while targeted proteomic assays are stored in SRMAtlas. However, the study of the missing proteins continues being an outstanding issue.

Areas covered: This review is focused on the implementation of proteogenomic methods designed to improve the detection and validation of the missing proteins. The evolution of the methodological strategies based on the combination of different omic technologies and the use of huge publicly available datasets is shown taking the Chromosome 16 Consortium as reference.

Expert commentary: Proteogenomics and other strategies of data analysis implemented within the C-HPP initiative could be used as guidance to complete in a near future the catalog of the human proteins. Besides, in the next years, we will probably witness their use in the B/D-HPP initiative to go a step forward on the implications of the proteins in the human biology and disease.  相似文献   


14.
After the successful completion of the Human Genome Project, the Human Proteome Organization has recently officially launched a global Human Proteome Project (HPP), which is designed to map the entire human protein set. Given the lack of protein-level evidence for about 30% of the estimated 20,300 protein-coding genes, a systematic global effort will be necessary to achieve this goal with respect to protein abundance, distribution, subcellular localization, interaction with other biomolecules, and functions at specific time points. As a general experimental strategy, HPP research groups will use the three working pillars for HPP: mass spectrometry, antibody capture, and bioinformatics tools and knowledge bases. The HPP participants will take advantage of the output and cross-analyses from the ongoing Human Proteome Organization initiatives and a chromosome-centric protein mapping strategy, termed C-HPP, with which many national teams are currently engaged. In addition, numerous biologically driven and disease-oriented projects will be stimulated and facilitated by the HPP. Timely planning with proper governance of HPP will deliver a protein parts list, reagents, and tools for protein studies and analyses, and a stronger basis for personalized medicine. The Human Proteome Organization urges each national research funding agency and the scientific community at large to identify their preferred pathways to participate in aspects of this highly promising project in a HPP consortium of funders and investigators.  相似文献   

15.
Zheng J  Gao X  Mato J  Beretta L  He F 《Proteomics》2008,8(17):3420-3423
The Human Liver Proteome Project is one of the Human Proteome Initiatives launched by Human Proteome Organization (HUPO). Major achievements of the project have been obtained under the efforts of international collaboration with all the participants since it was formally proposed in 2002. Its updated progresses were presented in the latest workshop held in conjunction with the sixth HUPO World Congress in October, 2007, Seoul, Korea. Furthermore, four topics related to the project as well as other initiatives were lively discussed among all the attendees.  相似文献   

16.
17.
The Human Proteome Project stands to eclipse the Human Genome Project in terms of scope, content and interpretation. Its outputs, in conjunction with recent developments across the proteomics community, provide new tools for cancer research with the potential of providing clinically relevant insights into the disease. These collectively may guide the development of future diagnosis, surveillance and treatment strategies. Having established a robust organizational framework within the international community, the Human Proteome Organization and the proteomics community at large have made significant advances in biomarker discovery, detection, molecular imaging and in exploring tumor heterogeneity. Here, the authors discuss some developments in cancer proteomics and how they can be implemented to reduce the global burden of the disease.  相似文献   

18.
The international Human Proteome Project (HPP), a logical continuation of the Human Genome Project, was launched on 23 September 2010 in Sydney, Australia. In accordance with the gene-centric approach, the goals of the HPP are to prepare an inventory of all human proteins and decipher the network of cellular protein interactions. The greater complexity of the proteome in comparison to the genome gives rise to three bottlenecks in the implementation of the HPP. The main bottleneck is the insufficient sensitivity of proteomic technologies, hampering the detection of proteins with low- and ultra-low copy numbers. The second bottleneck is related to poor reproducibility of proteomic methods and the lack of a so-called ‘gold’ standard. The last bottleneck is the dynamic nature of the proteome: its instability over time. The authors here discuss approaches to overcome these bottlenecks in order to improve the success of the HPP.  相似文献   

19.
《TARGETS》2003,2(1):10-13
Ian Humphery-Smith is Professor of Pharmaceutical Proteomics at Utrecht University, The Netherlands, and until recently was a Managing Director and Chief Scientific Officer of Glaucus Proteomics. After a PhD in Parasitology at the University of Queensland, he studied virology and bacteriology in France as a post-doc, before returning to Australia as Course-Coordinator in Medical Microbiology and Immunology at the University of Sydney. During this time, Humphery-Smith took up the posts of Executive Director of Australia's second largest DNA sequencing facility and Director of the Center for Proteomic Research and Gene-Product Mapping, which later became the world's first center to focus on studying the proteome. Humphery-Smith has devoted ten years of research to analyzing proteins in health and disease, and it was his work that originally coined the term ‘proteomics’. He was the first to publish the most complete analysis of an entire proteome in 2000, that of the bacterium Mycoplasma genitalium. He currently serves as a council member of the Human Proteome Organization (HUPO) and has been a prime mover in efforts to have the Human Proteome Project become a formally-ratified international initiative to follow-on from the Human Genome Project.  相似文献   

20.
Human liver proteome project: plan, progress, and perspectives   总被引:6,自引:0,他引:6  
The Human Liver Proteome Project is the first initiative of the human proteome project for human organs/tissues and aims at writing a modern Prometheus myth. Its global scientific objectives are to reveal the "solar system" of the human liver proteome, expression profiles, modification profiles, a protein linkage (protein-protein interaction) map, and a proteome localization map, and to define an ORFeome, physiome, and pathome. Since it was first proposed in April 2002, the Human Liver Proteome Project has attracted more than 100 laboratories from all over the world. In the ensuing 3 years, we set up a management infrastructure, identified reference laboratories, confirmed standard operating procedures, initiated international research collaborations, and finally achieved the first set of expression profile data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号