首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ghrelin is a physiological‐active peptide with growth hormone‐releasing activity, orexigenic activity, etc. In addition, the recent study has also suggested that ghrelin possesses the pathophysiological abilities related with type 2 diabetes. However, the ghrelin‐direct‐effects implicated in type 2 diabetes on peripheral tissues have been still unclear, whereas its actions on the central nervous system (CNS) appear to induce the development of diabetes. Thus, to assess its peripheral effects correlated with diabetes, we investigated the regulatory mechanisms about adipokines, which play a central role in inducing peripheral insulin resistance, secreted from mature 3T3‐L1 adipocytes stimulated with ghrelin in vitro . The stimulation with 50 nmol/L ghrelin for 24 h resulted in the significant 1.9‐fold increase on vascular endothelial growth factor‐120 (VEGF120) releases (p < 0.01) and the 1.7‐fold on monocyte chemoattractant protein‐1 (MCP‐1) (p < 0.01) from 3T3‐L1 adipocytes, respectively, while ghrelin failed to enhance tumor necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), IL‐6, IL‐10 and adiponectin secretions. In addition, Akt phosphorylation on Ser473 and c‐Jun NH2‐terminal protein kinase (JNK) phosphorylation on Thr183/Tyr185 were markedly enhanced 1.4‐fold (p < 0.01) and 1.6‐fold (p < 0.01) in the ghrelin‐stimulated adipocytes, respectively. Furthermore, the treatment with LY294002 (50 μmol/L) and Wortmannin (10nmol/L), inhibitors of phosphatidylinositol 3‐kinase (PI3K), significantly decreased the amplified VEGF120 secretion by 29% (p < 0.01) and 28% (p < 0.01) relative to the cells stimulated by ghrelin alone, respectively, whereas these inhibitors had no effects on increased MCP‐1 release. On the other hand, JNK inhibitor SP600125 (10 μmol/L) clearly reduced the increased MCP‐1, but not VEGF120, release by 35% relative to the only ghrelin‐stimulated cells (p < 0.01). In conclusion, ghrelin can enhance the secretions of proinflammatory adipokines, VEGF120 and MCP‐1, but fails to affect IL‐10 and adiponectin which are considered to be anti‐inflammatory adipokines. Moreover, this augmented VEGF120 release is invited through the activation of PI3K pathways and the MCP‐1 is through JNK pathways. Consequently, our results strongly suggest that ghrelin can induce the development of diabetes via its direct‐action in peripheral tissues as well as via in CNS. J. Cell. Physiol. 230: 199–209, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   

2.
3.
The apelin/APJ system has been implicated in obesity-related hypertension. We investigated the mechanism responsible for the pathogenesis of obesity-related hypertension with a special focus on the crosstalk between AngII/its type 1 receptor (AT1R) signaling and apelin/APJ expression. Sprague-Dawley rats fed a high-fat (obesity-related hypertension, OH) or normal-fat diet (NF) for 15 weeks were randomly assigned to one of two groups and administered vehicle or perindopril for 4 weeks. Compared to the NF rats, the OH rats showed lower levels of plasma apelin and apelin/APJ mRNAs of perirenal adipose tissues, and these changes were restored by perindopril. Administration of the AT1R antagonist olmesartan resulted in the restoration of the reduction of apelin and APJ expressions induced by AngII for 48 h in 3T3-L1 adipocytes. Among several inhibitors for extracellular signal-regulated kinases 1/2 (ERK1/2) PD98059, p38 mitogen-activated protein kinase (p38MAPK) SB203580 and phosphatidylinositol 3-kinase (PI3K) LY294002, the latter showed an additive effect on AngII-mediated inhibitory effects. In addition, the levels of p-Akt, p-ERK and p38MAPK proteins were decreased by long-term treatment with AngII (120 min), and these changes were restored by Olmesartan. Apelin/APJ appears to be impaired in obesity-related hypertension. The AngII inhibition-mediated beneficial effects are likely attributable, at least in part, to restoration of p38/ERK-dependent apelin/APJ expression in diet-induced obesity-related hypertension.  相似文献   

4.
5.
Lipophilic insect hormones and their analogs affect mammalian physiology by regulating the expression of metabolic genes. Therefore, we determined the effect of fenoxycarb, a juvenile hormone analog, on lipid metabolism in adipocytes. Here, we demonstrated that fenoxycarb dose‐dependently promoted lipid accumulation in 3T3‐L1 adipocytes during adipocyte differentiation and that its lipogenic effect was comparable to that of rosiglitazone, a well‐known ligand for peroxisome proliferator‐activated receptor gamma (PPARγ). Furthermore, fenoxycarb stimulated PPARγ activity without affecting other nuclear receptors, such as liver X receptor (LXR), farnesoid X‐activated receptor (FXR) and Nur77. In addition, fenoxycarb treatment increased the expression of PPARγ and fatty acid transporter protein 1 (FATP1) in 3T3‐L1 adipocytes, suggesting that fenoxycarb may facilitate adipocyte differentiation by enhancing PPARγ signaling, the master regulator of adipogenesis. Together, our results suggest that fenoxycarb promoted lipid accumulation in adipocytes, in part, by stimulating PPARγ.  相似文献   

6.
The hypoxia‐inducible factors have recently been identified as critical regulators of angiogenic–osteogenic coupling. Mice overexpressing HIFα subunits in osteoblasts produce abundant VEGF and develop extremely dense, highly vascularized long bones. In this study, we investigated the individual contributions of Hif‐1α and Hif‐2α in angiogenesis and osteogenesis by individually disrupting each Hifα gene in osteoblasts using the Cre‐loxP method. Mice lacking Hif‐1α demonstrated markedly decreased trabecular bone volume, reduced bone formation rate, and altered cortical bone architecture. By contrast, mice lacking Hif‐2α had only a modest decrease in trabecular bone volume. Interestingly, long bone blood vessel development measured by angiography was decreased by a similar degree in both ΔHif‐1α and ΔHif‐2α mice suggesting a common role for these Hifα subunits in skeletal angiogenesis. In agreement with this idea, osteoblasts lacking either Hif‐1α or Hif‐2α had profound reductions in VEGF mRNA expression but only the loss of Hif‐1α impaired osteoblast proliferation. These findings indicate that expression of both Hif‐1α and Hif‐2α by osteoblasts is required for long bone development. We propose that both Hif‐1α and Hif‐2α function through cell non‐autonomous modes to promote vascularization of bone and that Hif‐1α also promotes bone formation by exerting direct actions on the osteoblast. J. Cell. Biochem. 109: 196–204, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Metoprolol is available for clinical use as a racemic mixture. The S‐(?)‐metoprolol enantiomer is the one expressing higher activity in the blockade of the β1‐adrenergic receptor. The α‐hydroxymetoprolol metabolite also has activity in the blockade of the β1‐adrenergic receptor. The present study describes the development and validation of a stereoselective method for sequential analysis of metoprolol and of α‐hydroxymetoprolol in plasma using high‐performance liquid chromatography with tandem mass spectrometry (LC‐MS/MS). 1‐ml aliquots of plasma were extracted with dichloromethane : diisopropyl ether (1:1, v/v). Metoprolol enantiomers and α‐hydroxymetoprolol isomers were separated on a Chiralpak AD column (Daicel Chemical Industries, New York, NY, USA) and quantitated by LC‐MS/MS. The limit of quantitation obtained was 0.2 ng of each metoprolol enantiomer/ml plasma and 0.1 ng/ml of each α‐hydroxymetoprolol isomer/ml plasma. The method was applied to the study of kinetic disposition of metoprolol in plasma samples collected up to 24 h after the administration of a single oral dose of 100‐mg metoprolol tartrate to a hypertensive parturient with a gestational age of 42 weeks. The clinical study showed that the metoprolol pharmakokinetics is enantioselective, with the observation of higher area under the curve (AUC)0?∞ values for S‐(?)‐metoprolol (AUCS‐(?)/AUCR‐(+) = 1.81) and the favoring of the formation of the new chiral center 1′R of α‐hydroxymetoprolol (AUC0?∞1′R/1′S = 2.78). Chirality, 25:1–7, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Objective: To investigate the involvement of α1‐adrenoceptors in the sympathetic regulation of glucose uptake in human adipocytes. Research Methods and Procedures: Twenty‐four severely obese subjects participated in this study. The microdialysis technique was used to determine interstitial glucose concentration after stimulation of abdominal subcutaneous adipose tissue with the α1‐agonist norfenefrine, the α1, 2β‐agonist norepinephrine, and both agents in combination with the α1‐antagonist urapidil. The effect of β‐adrenoceptor stimulation was assessed by orciprenaline. Changes in local blood flow were determined using the ethanol escape technique. Results: Both norfenefrine and norepinephrine induced a concentration‐dependent decrease of interstitial glucose concentration, with a greater decrease observed with norepinephrine. Preperfusion of adipose tissue with urapidil inhibited glucose decrease. The inhibition was overcome with high concentrations of norfenefrine and norepinephrine, respectively. Both adrenergic agents induced tachyphylaxia. Urapidil enhanced extracellular glucose level at high concentration. Blood flow decreased in the presence of norfenefrine and norepinephrine but increased in response to urapidil. The accelerated blood flow due to urapidil was counteracted by norepinephrine and norfenefrine. Orciprenaline decreased interstitial glucose concentration and increased nutritive blood flow. The observed changes in blood flow induced by adrenergic agents were not related to glucose uptake. Discussion: The stimulatory effect of the sympathetic nerves on glucose uptake in subcutaneous adipose tissue appears to be mediated by the α1‐adrenoceptor. Norepinephrine enhances glucose entry into adipocytes independently of insulin action. In obese subjects with insulin resistance, the α1‐adrenergic receptor may provide an important alternative pathway for glucose uptake.  相似文献   

9.
Oxcarbazepine is a second‐generation antiepileptic drug indicated as monotherapy or adjunctive therapy in the treatment of partial seizures or generalized tonic–clonic seizures in adults and children. It undergoes rapid presystemic reduction with formation of the active metabolite 10‐hydroxycarbazepine (MHD), which has a chiral center at position 10, with the enantiomers (S)‐(+)‐ and R‐(?)‐MHD showing similar antiepileptic effects. This study presents the development and validation of a method of sequential analysis of oxcarbazepine and MHD enantiomers in plasma using liquid chromatography with tandem mass spectrometry (LC‐MS/MS). Aliquots of 100 μL of plasma were extracted with a mixture of methyl tert‐butyl ether: dichloromethane (2:1). The separation of oxcarbazepine and the MHD enantiomers was obtained on a chiral phase Chiralcel OD‐H column, using a mixture of hexane:ethanol:isopropanol (80:15:5, v/v/v) as mobile phase at a flow rate of 1.3 mL/min with a split ratio of 1:5, and quantification was performed by LC‐MS/MS. The limit of quantification was 12.5 ng oxcarbazepine and 31.25 ng of each MHD enantiomer/mL of plasma. The method was applied in the study of kinetic disposition of oxcarbazepine and the MHD enantiomers in the steady state after oral administration of 300 mg/12 h oxcarbazepine in a healthy volunteer. The maximum plasma concentration of oxcarbazepine was 1.2 µg/mL at 0.75 h. The kinetic disposition of MHD is enantioselective, with a higher proportion of the S‐(+)‐MHD enantiomer compared to R‐(?)‐MHD and an AUC0‐12 S‐(+)/R‐(?) ratio of 5.44. Chirality 25:897–903, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
11.
12.
13.
14.
15.
Changes in leaf soluble proteome were explored in 3‐month‐old plants of metallicolous (M) and nonmetallicolous (NM) Agrostis capillaris L. populations exposed to increasing Cu concentrations (1–50 μM) to investigate molecular mechanisms underlying plant responses to Cu excess and tolerance of M plants. Plants were cultivated on perlite (CuSO4 spiked‐nutrient solution). Soluble proteins, extracted by the trichloroacetic acid/acetone procedure, were separated with 2‐DE (linear 4–7 pH gradient). Analysis of CCB‐stained gels (PDQuest) reproducibly detected 214 spots, and 64 proteins differentially expressed were identified using LC‐MS/MS. In both populations, Cu excess impacted both light‐dependent (OEE, cytochrome b6‐f complex, and chlorophyll a‐b binding protein), and ‐independent (RuBisCO) photosynthesis reactions, more intensively in NM leaves (ferredoxin‐NADP reductase and metalloprotease FTSH2). In both populations, upregulation of isocitrate dehydrogenase and cysteine/methionine synthases respectively suggested increased isocitrate oxidation and enhanced need for S‐containing amino‐acids, likely for chelation and detoxification. In NM leaves, an increasing need for energetic compounds was indicated by the stimulation of ATPases, glycolysis, pentose phosphate pathway, and Calvin cycle enzymes; impacts on protein metabolism and oxidative stress increase were respectively suggested by the rise of chaperones and redox enzymes. Overexpression of a HSP70 may be pivotal for M Cu tolerance by protecting protein metabolism. All MS data have been deposited in the ProteomeXchange with the dataset identifier PXD001930 ( http//proteomecentral.proteomexchange.org/dataset/PXD001930 ).  相似文献   

16.
Vascular endothelial growth factor (VEGF) is correlated with angiogenesis and early relapse of colorectal cancer (CRC). This study investigated the role of miR‐148a in the regulation of VEGF/angiogenesis and early relapse of CRC. We established a stable clone with miR‐148a expression in HCT116 and HT29 cell lines and created a hypoxic condition by using CoCl2 to determine the underlying mechanism of miR‐148a. The effects of miR‐148a on the phosphoryl‐ERK (pERK)/hypoxia‐inducible factor‐1α (HIF‐1α)/VEGF pathway were evaluated through Western blotting and the inhibitory effect of miR‐148a on angiogenesis was demonstrated through a tube formation assay. Sixty‐three CRC tissues (28 early relapse and 35 non‐early relapse) were analysed to assess the relationship between miR‐148a and HIF‐1α/VEGF. The protein expression of pERK/HIF‐1α/VEGF in HCT116 and HT29 cells was significantly decreased by miR‐148a (all P < 0.05). The protein expression of VEGF/HIF‐1α was strongly inversely associated with the expression of miR‐148a in the 63 CRC tissue samples (all P < 0.05). Tube formation assay demonstrated that miR‐148a significantly obliterated angiogenesis. miR‐148a suppresses VEGF through down‐regulation of the pERK/HIF‐1α/VEGF pathway and might lead to the inhibition of angiogenesis; miR‐148a down‐regulation increased the early relapse rate of CRC. This demonstrates that miR‐148a is a potential diagnostic and therapeutic target.  相似文献   

17.
18.
Objective: The Na,K‐ATPase α2 subunit gene (Atp1a2) is expressed in the brain, skeletal muscles, heart, and adipocytes. Specific function of the α2 subunit, such as involvement in differentiation and function of adipocytes, has not been addressed. The aim of this study was to examine whether Atp1a2‐defective heterozygous mice show obesity and reveal the mechanisms underlying the obesity. Research Methods and Procedures: We measured the differentiation and glucose uptake function of in vitro‐differentiated adipocytes derived from embryonic fibroblasts of Atp1a2‐defective mice. Food intake, body temperature, metabolic rate, and spontaneous activity and mRNA levels of neuropeptide genes were compared between the heterozygous and wild‐type adult mice. Results: Atp1a2 heterozygous female mice developed obesity after middle age. The time course of in vitro adipocyte differentiation of embryonic fibroblasts isolated from wild type, heterozygous, and homozygous mice was not different, glucose and Rb uptake activities of the in vitro‐differentiated adipocytes were not altered, and the effects of insulin on glucose uptake and those of monensin and ouabain on Rb uptake were similar among the genotypes. However, food intake in the light phase was significantly greater in the heterozygous mice than the wild type in the 24‐hour dark‐light cycle, whereas it was similar under constant‐light condition. Body temperature, metabolic rate at rest, and spontaneous motor activity of the heterozygous mice were similar to those of the wild type. Orexin mRNA level was lower in heterozygous than wild‐type mice. Discussion: The Na,K‐ATPase α2 subunit is not involved in the differentiation or in glucose and Rb uptake function of in vitro‐differentiated adipocytes. Hyperphagia is the likely primary cause of obesity in Atp1a2 heterozygous mice.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号