首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Kinetic aspects of the bacterial reduction of hexavalent chromium (chromate: CrO2-4) were investigated using Enterobacter cloacae strain HO1. E. cloacae strain HO1 could reduce hexavalent chromium to the trivalent form (Cr3+) anaerobically. High concentrations of CrO2-4 inhibited the reduction, and a substrate inhibition model gave a good fit to the observed data. The rate of chromate reduction was proportional to cell density. The effect of temperature on the reduction rate followed the Arrhenius equation. The rate of chromate reduction was also dependent on pH and the concentrations of carbon and energy sources in the culutre medium. Amino acids including asparagine, methionine, serine and threonine were utilized effectively as carbon and energy sources for chromate reduction.  相似文献   

2.
To improve photodynamic activity of the parent hypocrellin B (HB), a tetra-brominated HB derivative (compound 1) was synthesized in high yield. Compared with HB, compound 1 has enhanced red absorption and high molar extinction coefficients. The photodynamic action of compound 1, especially the generation mechanism and efficiencies of active species (Sen·-, O·-2 and 1O2) were studied using electron paramagnetic resonance (EPR) and spectrophotometric methods. In the deoxygenated DMSO solution of compound 1, the semiquinone anion radical of compound 1 is photogenerated via the self-electron transfer between the excited and ground state species. The presence of electron donor significantly promotes the reduction of compound 1. When oxygen is present, superoxide anion radical (O·-2) is formed via the electron transfer from Sens·- to the ground state molecular oxygen. The efficiencies of Sens·- and O·-2 generation by compound 1 are about three and two times as much as that of HB, respectively. Singlet oxygen (1O2) can be produced via the energy transfer from triplet compound 1 to ground state oxygen molecules. The quantum yield of singlet oxygen (1O2) is 0.54 in CHCl3 similar to that of HB. Furthermore, it was found that the accumulation of Sens·- would replace that of O·-2 or 1O2 with the depletion of oxygen in the sealed system.  相似文献   

3.
Enterobacter cloacae strain HO1 was able to reduce toxic hexavalent chromium (chromate) anaerobically. The reduction of chromate by E. cloacae cells was sensitive to oxygen stress. Cultures under continuous aeration showed no chromate reduction. However, when released from the oxygen stress, the cultures readily resumed chromate reduction.  相似文献   

4.
Resistance to toxic hexavalent chromium (chromate: CrO4(2)) in Enterobacter cloacae strain HO1, isolated from an activated sludge sample, was investigated under aerobic and anaerobic conditions. Decreased uptake of 51CrO4(2-) in E. cloacae strain HO1 was observed under aerobic conditions, when compared with a standard laboratory E. cloacae strain (IAM 1624). Under anaerobic conditions E. cloacae strain HO1 was able to reduce hexavalent chromium to the less toxic trivalent form. When E. clocacae strain HO1 was grown with nitrate anaerobically, the cells were observed to lose simultaneously their chromate-reducing ability and chromate-resistance under anaerobic conditions.  相似文献   

5.
The iron (IV), (V) and (VI) oxidation states are of great interest because of their role in catalytic oxidation/ hydroxylation reactions. This report summarizes the information currently available on the kinetic and chemical properties of the water-soluble ions of FeO24-, FeO3-4 and FeO4-4, their prorogated forms. and/or simple complex derivatives. The discussion includes their radiation-induced formation, decay kinetics, reactivity with other compounds, determination of their respective pKa, values as well as spectral properties.  相似文献   

6.
An Enterobacter cloacae strain (HO1) capable of reducing hexavalent chromium (chromate) was isolated from activated sludge. This bacterium was resistant to chromate under both aerobic and anaerobic conditions. Only the anaerobic culture of the E. cloacae isolate showed chromate reduction. In the anaerobic culture, yellow turned white with chromate and the turbidity increased as the reduction proceeded, suggesting that insoluble chromium hydroxide was formed. E. cloacae is likely to utilize toxic chromate as an electron acceptor anaerobically because (i) the anaerobic growth of E. cloacae HO1 accompanied the decrease of toxic chromate in culture medium, (ii) the chromate-reducing activity was rapidly inhibited by oxygen, and (iii) the reduction occurred more rapidly in glycerol- or acetate-grown cells than in glucose-grown cells. The chromate reduction in E. cloacae HO1 was observed at pH 6.0 to 8.5 (optimum pH, 7.0) and at 10 to 40°C (optimum, 30°C).  相似文献   

7.
To improve the water solubility and red absorption of the parent hypocrellin B (HB), the complex of HB with aluminum ion has been first synthesized in high yield. The photodynamic action of Al3+-HB, especially the generation mechanism of active species, ([Al3+-HB]·-, O·-2 and 1O2) was studied using electron paramagnetic resonance (EPR) and spectrophotometric methods. In the deoxygenated DMSO solution of Al3+-HB, the semiquinone anion radical of Al3+-HB is photogenerated via the self-electron transfer between the excited and ground state species. The presence of electron donor significantly promotes the reduction of Al3+-HB. When oxygen is present, superoxide anion radical (O·-2) is formed via the electron transfer from [Al3+-HB]·- to the ground state molecular oxygen. Singlet oxygen (1O2) can be produced via the energy transfer from triplet Al3+-HB to ground state oxygen molecules. Furthermore, it is very significant that the accumulation of [Al3+-HB]·- would replace that of O·-2 or 1O2 with the consumption of oxygen in the sealed system.  相似文献   

8.
The kinetics of O·-2 reaction with semi-oxidized tryptophan radicals in lysozyme, Trp·(Lyz) have been investigated at various pHs and conformational states by pulse radiolysis. The Trp·(Lyz) radicals were formed by Br·-2 oxidation of the 3-4 exposed Trp residues in the protein. At pH lower than 6.2, the apparent bimolecular rate is about 2 × 108M-1s-1; but drops to 8 × 107M-1s-1 or less above pH 6.3 and in CTAC micelles. Similarly, the apparent bimolecular rate constant for the intermolecular Trp·(Lyz) + Trp·(Lyz) recombination reaction is about (4-7 × 106M-1s-1) at/or below pH 6.2 then drops to 1.3-1.6 × 106M-1s-1 at higher pH or in micelles. This behavior suggests important conformational and/or microenvironmental rearrangement with pH, leading to less accessible semioxidized Trp· residues upon Br·-2 reaction. The kinetics of Trp·(Lyz) with ascorbate, a reducing species rather larger than O·-2 have been measured for comparison. The well-established long range intramolecular electron transfer from Tyr residues to Trp radicals-leading to the repair of the semi-oxidized Trp·(Lyz) and formation of the tyrosyl phenoxyl radical is inhibited by the Trp·(Lyz)+O·-2 reaction, as is most of the Trp·(Lyz)+Trp·(Lyz) reaction. However, the kinetic behavior of Trp·(Lyz) suggests that not all oxidized Trp residues are involved in the intermolecular recombination or reaction with O·-2. As the kinetics are found to be quite pH sensitive, this study demonstrates the effect of the protein conformation on O·-2 reactivity. To our knowledge, this is the first report on the kinetics of a protein-O·-2 reaction not involving the detection of change in the redox state of a prosthetic group to probe the reactivity of the superoxide anion.  相似文献   

9.
The ability of sulphate-reducing bacterial biofilms to reduce hexavalent chromium (Cr(VI)) to insoluble Cr(III), a process of environmental and biotechnological significance, was investigated. The reduction of chromate to insoluble form has been quantified and the effects of chromate on the carbon source utilization and sulphate-reducing activity of the bacterial biofilms evaluated. Using lactate as the carbon/energy source and in the presence of sulphate, reduction of 500 micromol l-1 Cr(VI) was monitored over a 48-h period where 88% of the total chromium was removed from solution. Mass balance calculations showed that ca 80% of the total chromium was precipitated out of solution with the bacterial biofilm retaining less than 10% of the chromium. Only ca 12% of the chromate added was not reduced to insoluble form. Although Cr(VI) did not have a significant effect on C source utilization, sulphate reduction was severely inhibited by 500 micromol-1 Cr(VI) and only ca 10% of the sulphate reducing activity detected in control biofilms occurred in the presence of Cr(VI). Low levels of sulphide were also produced in the presence of chromate, with control biofilms producing over 10-times more sulphide than Cr(VI)-exposed biofilms. Sulphide- or other chemically-mediated Cr(VI) reduction was not detected. The biological mechanism of Cr(VI) reduction is likely to be similar to that found in other sulphate-reducing bacteria.  相似文献   

10.
该文选择红藻门大型植物龙须菜(Gracilaria lemaneiformis)作为研究对象,通过黑白瓶法筛选出有机试剂POPSO(哌嗪-N,N-双(2-羟基乙烷磺酸)),能较好地缓冲室内龙须菜培养中介质pH的波动。在此基础上,探讨了POPSO对龙须菜生长的影响,结果表明:15 mmol·L -1及以上浓度的POPSO能较好地稳定介质pH值,减少系统中DIC浓度的急剧变化,但POPSO对CO2浓度波动不起作用;试验结果还表明,介质中的CO2浓度与龙须菜的生长速率间存在着类似酶动力学方程的关系,当介质中的CO2浓度下降到5.25 μmol·L -1以下时,龙须菜生长出现抑制现象。相对稳定pH的培养环境,更有利于介质DIC中的HCO-3、CO2-3向CO2的转换,缓解龙须菜生长的C抑制。  相似文献   

11.
Oxygen radical scavengers have been shown to prevent the development of ischemic preconditioning, suggesting that reactive oxygen species (ROS) might be involved in this phenomenon. In the present study, we have investigated whether direct exposure to ROS produced by photoactivated Rose Bengal (RB) could mimic the protective effects of ischemic preconditioning.

Methods In vitro generation of ROS from photoactivated RB in a physiological buffer was first characterised by ESR spectroscopy in the presence of 2,2,6,6-tetramethyl-1-piperidone (oxoTEMP) or 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). In a second part of the study, isolated rat hearts were exposed for 2.5 min to photoactivated RB. After 5 min washout, hearts underwent 30 min no-flow normothermic ischemia followed by 30 min of reperfusion.

Results and Conclusions The production of singlet oxygen (1O2) by photoactivated RB in the perfusion medium was evidenced by the ESR detection of the nitroxyl radical oxoTEMPO. Histidine completely inhibited oxoTEMPO formation. In addition, the use of DMPO has indicated that (i) superoxide anions (O·-2) are produced directly and (ii) hydroxyl radicals (HO·) are formed indirectly from the successive O·-2 dismutation and the Fenton reaction. In the perfusion experiments, myocardial post-ischemic recovery was dramatically impaired in hearts previously exposed to the ROS produced by RB photoactivation (1O2, O·-2, H2O2 and HO·) as well as when 1O2 was removed by histidine (50 mM) addition. However, functional recovery was significantly improved when hearts were exposed to photoactivated RB in presence of superoxide dismutase (105 IU/L) and catalase (106 IU/L).

Further studies are now required to determine whether the cardioprotective effects of Rose Bengal in presence of O·-2 and H2O2 scavengers are due to singlet oxygen or to other species produced by Rose Bengal degradation.  相似文献   

12.
A locally isolated gram negative strain of Brucella sp., identified by biochemical methods and 16SrRNA analysis, reduced chromate to 100%, 94.1%, 93.2%, 66.9% and 41.6% at concentrations of 50, 100, 150, 200 and 300mgl(-1), respectively at pH 7 and temperature 37 degrees C. Increasing concentrations of Cr(VI) in the medium lowered the growth rate but could not be directly correlated with the amount of Cr(VI) reduced. The strain also exhibited multiple heavy metal (Ni,Zn,Hg,Pb,Co) tolerance and resistance to various antibiotics. Assay with crude cell-free extracts demonstrated that the hexavalent chromium reduction was mainly associated with the soluble fraction of the cell. High Cr(VI) concentration resistance and high Cr(VI) reducing ability of the strain make it a suitable candidate for bioremediation.  相似文献   

13.
Nitric oxide, a gaseous free radical, is poorly reactive with most biomolecules but highly reactive with other free radicals. Its ability to scavenge peroxyl and other damaging radicals may make it an important antioxidant in vivo, particular in the cardiovascular system, although this ability has been somewhat eclipsed in the literature by a focus on the toxicity of peroxynitrite, generated by reaction of O·-2 with NO· (or of NO- with O2). On balance, experimental and theoretical data support the view that ONOO- can lead to hydroxyl radical (OH·) generation at pH 7.4, but it seems unlikely that OH· contributes much to the cytotoxicity of ONOO-. The cytotoxicity of ONOO- may have been over-emphasized: its formation and rapid reaction with antioxidants may provide a mechanism of using NO· to dispose of excess O·-2, or even of using O·-2 to dispose of excess NO·, in order to maintain the correct balance between these radicals in vivo. Injection or instillation of “bolus” ONOO- into animals has produced tissue injury, however, although more experiments generating ONOO- at steady rates in vivo are required. The presence of 3-nitrotyrosine in tissues is still frequently taken as evidence of ONOO- generation in vivo, but abundant evidence now exists to support the view that it is a biomarker of several “reactive nitrogen species”. Another under-addressed problem is the reliability of assays used to detect and measure 3-nitrotyrosine in tissues and body fluids: immunostaining results vary between laboratories and simple HPLC methods are susceptible to artefacts. Exposure of biological material to low pH (e.g. during acidic hydrolysis to liberate nitrotyrosine from proteins) or to H2O2 might cause artefactual generation of nitrotyrosine from NO-2 in the samples. This may be the origin of some of the very large values for tissue nitrotyrosine levels quoted in the literature. Nitrous acid causes not only tyrosine nitration but also DNA base deamination at low pH: these events are relevant to the human stomach since saliva and many foods are rich in nitrite. Several plant phenolics inhibit nitration and deamination in vitro, an effect that could conceivably contribute to their protective effects against gastric cancer development.  相似文献   

14.
A Gram-negative bacterium (CRB5) was isolated from a chromium-contaminated site that was capable of reducing hexavalent chromium to an insoluble precipitate, thereby removing this toxic chromium species from solution. Analysis of the 16S rRNA from the isolate revealed that it was a pseudomonad with high similarity to Pseudomaonas synxantha . CRB5 was tolerant to high concentrations of chromate (500 mg l−1) and can reduce Cr(VI) under aerobic and anaerobic conditions. It also exhibited a broad range of reduction efficiencies under minimal nutrient conditions at temperatures between 4°C and 37°C and at pH levels from 4 to 9. As reduction increased, so did total cellular protein, indicating that cell growth was a requirement for reduction. Under low nutrient conditions with CRB5 or when using non-sterile contaminated groundwater from the site, reduction of Cr(VI) was followed by a increase in solution turbidity as a result of the formation of fine-grained Cr(III) precipitates, most probably chromium hydroxide mineral phases such as Cr(OH)3. Chromium adsorption and precipitation, as observed by transmission electron microscopy coupled with energy dispersive X-ray spectroscopy (TEM/EDS), revealed that the surfaces of the cells were uniformly stained with bound Cr(III) and amorphous precipitates (as determined by selected area electron diffraction; SAED). A mass balance of chromium in a batch bioreactor revealed that up to 30% of the total Cr was as settable precipitates or bound to cells.  相似文献   

15.
The reduction of acetylated, fully succinylated and dicarboxymethyl horse cytochromes c by the radicals CH3CH(OH), CO2, O2, and eaq′ and the oxidation of the reduced cytochrome c derivatives by Fe(CN)3−6 were studied using the pulse radiolysis technique. Many of the reactions were also examined as a function of ionic strength. By obtaining rate constants for the reactions of differently charged small molecules redox agents with the differently charged cytochrome c derivatives at both zero ionic strength and infinite ionic strength, electrostatic and conformational contributions to the electron transfer mechanism were effectively partitioned from each other in some cases. In regard to cytochrome c electron transfer mechanism, the results, especially those for which conformational influences predominate, are supportive of the electron being transferred in the heme edge region.  相似文献   

16.
The Pt2 (II) isomeric terminal hydrides [(CO)(H)Pt(μ-PBu2)2Pt(PBu2H)]CF3SO3 (1a), and [(CO)Pt(μ-PBu2)2Pt(PBu2H)(H)]CF3SO3 (1b), react rapidly with 1 atm of carbon monoxide to give the same mixture of two isomers of the Pt2 (I) dicarbonyl [Pt2(μ-PBu2)(CO)2(PBu2H)2]CF3SO3 (3-Pt); the solid state structure of the isomer bearing the carbonyl ligands pseudo-trans to the bridging phosphide was solved by X-ray diffraction. A remarkable difference was instead found between the reactivity of 1a and 1b towards carbon disulfide or isoprene. In both cases 1b reacts slowly to afford [Pt2(μ-PBu2)(μ,η22-CS2)(PBu2H)2]CF3SO3 (4-Pt), and [Pt2(μ-PBu2)(μ,η22-isoprene) (PBu2H)2]CF3SO3 (6-Pt), respectively. In the same experimental conditions, 1a is totally inert. A common mechanism, proceeding through the preassociation of the incoming ligand followed by the P---H bond formation between one of the bridging P atoms and the hydride ligand, has been suggested for these reactions.  相似文献   

17.
P C Wang  T Mori  K Toda    H Ohtake 《Journal of bacteriology》1990,172(3):1670-1672
Washed cells of Enterobacter cloacae HO1 reduced hexavalent chromium (chromate: CrO4(2-) anaerobically. Chromate reductase activity was preferentially associated with the membrane fraction of the cells. Right-side-out membrane vesicles prepared from E. cloacae cells showed high chromate reductase activities when ascorbate-reduced phenazine methosulfate was added as an electron donor.  相似文献   

18.
Apparent molar relative enthalpies of dilution φLof aqueous solutions of a series of alkylated diketopyrimidines: m1Ura, m1,32Ura, m1,32Thy, m1,3,63Ura and e1,32Thy were measured as a function of concentration of the solutes at three temperatures 298.15, 308.15 and 318.15 K. Dilution proved to be an endothermic process over the whole range of molalities m and temperatures studied for all compounds except the e1,32Thy solution, the dilution of which, with the exception of the lowest concentrations (m > 0.2–0.3) was an exothermic process. Partial molar relative enthalpies of dilution -L2(m) derived from φL(m) functions were analysed as if they were composed of two additive contributions: an endothermic one -L2, (m1) and an exothermic one 1.2, (mas0), owing to the presence in the solutions of a free monomer m1 or associated species mas, respectively. Partial molar heat capacities of the solutes, evaluated by differentiation of -L2(m) functions in respect to temperature, decreased with the rise of concentration in the order of the tendency of the solutes to stacking association. Changes in heat content and in heat capacity of solutions upon their dilution are interpreted in terms of involvement of hydrophobic hydration and association of the solutes.  相似文献   

19.
Electrochemical studies on metronidazole using mixed aqueous/dimethylformamide (DMF) solvents have allowed us to generate the one-electron addition product, the nitro radical anion, RNO-2. Cyclic volt-ammetric techniques have been employed to study the tendency of RNO-2 to undergo further chemical reaction. The return-to-forward peak current ratio. ip/ipf. was found to increase towards unity with increasing DMF content of the medium, indicating the extended lifetime of RNO-2. Second order kinetics for the decay of RNO-2 were established at all DMF concentrations examined. Extrapolation has allowed the rate constant and a first half-life of 8.4 × 104dm2/mol-sec and 0.059 seconds respectively, to be determined for the decay of RNO-2 in a purely aqueous media. This is impossible by direct electrochemical measurement in water. due to a different reduction mechanism, giving the hydroxylamine derivative in a single 4-electron step. The application of the technique to other nitro-aromatic compounds is discussed.  相似文献   

20.
O2 generation in mitochondrial electron transport systems, especially the NADPH-coenzyme Q10 oxidoreductase system, was examined using a model system, NADPH-coenzyme Q1-NADPH-dependent cytochrome P-450 reductase. One electron reduction of coenzyme Q1 produces coenzyme Q1 and O2 during enzyme-catalyzed reduction and O2 + coenzyme Q1 are in equilibrium with O2 + coenzyme Q1 in the presence of enough O2. The coenzyme Q1 produced can be completely eliminated by superoxide dismutase, identical to bound coenzyme Q10 radical produced in a succinate/fumarate couple-KCN-submitochondrial system in the presence of O2. Superoxide dismutase promotes electron transfer from reduced enzyme to coenzyme Q1 by the rapid dismutation of O2 generated, thereby preventing the reduction of coenzyme Q1 by O2. The enzymatic reduction of coenzyme Q1 to coenzyme Q1H2 via coenzyme Q1 is smoothly achieved under anaerobic conditions. The rate of coenzyme Q1H2 autoxidation is extremely slow, i.e., second-order constant for [O2][coenzyme Q1H2] = 1.5 M−1 · s−1 at 258 μM O2, pH 7.5 and 25°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号