首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
All of the previously reported recombinant RNA-dependent RNA polymerases (RdRp), the NS5B enzymes, of hepatitis C virus (HCV) could function only in a primer-dependent and template-nonspecific manner, which is different from the expected properties of the functional viral enzymes in the cells. We have now expressed a recombinant NS5B that is able to synthesize a full-length HCV genome in a template-dependent and primer-independent manner. The kinetics of RNA synthesis showed that this RdRp can initiate RNA synthesis de novo and yield a full-length RNA product of genomic size (9.5 kb), indicating that it did not use the copy-back RNA as a primer. This RdRp was also able to accept heterologous viral RNA templates, including poly(A)- and non-poly(A)-tailed RNA, in a primer-independent manner, but the products in these cases were heterogeneous. The RdRp used some homopolymeric RNA templates only in the presence of a primer. By using the 3'-end 98 nucleotides (nt) of HCV RNA, which is conserved in all genotypes of HCV, as a template, a distinct RNA product was generated. Truncation of 21 nt from the 5' end or 45 nt from the 3' end of the 98-nt RNA abolished almost completely its ability to serve as a template. Inclusion of the 3'-end variable sequence region and the U-rich tract upstream of the X region in the template significantly enhanced RNA synthesis. The 3' end of minus-strand RNA of HCV genome also served as a template, and it required a minimum of 239 nt from the 3' end. These data defined the cis-acting sequences for HCV RNA synthesis at the 3' end of HCV RNA in both the plus and minus senses. This is the first recombinant HCV RdRp capable of copying the full-length HCV RNA in the primer-independent manner expected of the functional HCV RNA polymerase.  相似文献   

2.
In our attempt to obtain further information on the replication mechanism of the hepatitis C virus (HCV), we have studied the role of sequences at the 3'-end of HCV minus-strand RNA in the initiation of synthesis of the viral genome by viral RNA-dependent RNA polymerase (RdRp). In this report, we investigated the template and binding properties of mutated and deleted RNA fragments of the 3'-end of the minus-strand HCV RNA in the presence of viral polymerase. These mutants were designed following the newly established secondary structure of this viral RNA fragment. We showed that deletion of the 3'-SL-A1 stem loop significantly reduced the level of RNA synthesis whereas modifications performed in the SL-B1 stem loop increased RNA synthesis. Study of the region encompassing the 341 nucleotides of the 3'-end of the minus-strand RNA shows that these two hairpins play a very limited role in binding to the viral polymerase. On the contrary, deletions of sequences in the 5'-end of this fragment greatly impaired both RNA synthesis and RNA binding. Our results strongly suggest that several domains of the 341 nucleotide region of the minus-strand 3'-end interact with HCV RdRp during in vitro RNA synthesis, in particular the region located between nucleotides 219 and 239.  相似文献   

3.
Kim M  Kim H  Cho SP  Min MK 《Journal of virology》2002,76(14):6944-6956
The hepatitis C virus (HCV)-encoded NS5B protein is an RNA-dependent RNA polymerase which plays a substantial role in viral replication. We expressed and purified the recombinant NS5B of an HCV genotype 3a from Esherichia coli, and we investigated its ability to bind to the viral RNA and its enzymatic activity. The results presented here demonstrate that NS5B interacts strongly with the coding region of positive-strand RNA, although not in a sequence-specific manner. It was also determined that more than two molecules of polymerase bound sequentially to this region with the direction 3' to 5'. Also, we attempted to determine the initiation site(s) of de novo synthesis by NS5B on X RNA, which contains the last 98 nucleotides of HCV positive-strand RNA. The initiation site(s) on X RNA was localized in the pyrimidine-rich region of stem I. However, when more than five of the nucleotides of stem I in X RNA were deleted from the 3' end, RNA synthesis initiated at another site of the specific ribonucleotide. Our study also showed that the efficiency of RNA synthesis, which was directed by X RNA, was maximized by the GC base pair at the penultimate position from the 3' end of the stem. These results will provide some clues to understanding the mechanism of HCV genomic RNA replication in terms of viral RNA-NS5B interaction and the initiation of de novo RNA synthesis.  相似文献   

4.
Kao CC  Yang X  Kline A  Wang QM  Barket D  Heinz BA 《Journal of virology》2000,74(23):11121-11128
The RNA-dependent RNA polymerase (RdRp) from hepatitis C virus (HCV), nonstructural protein 5B (NS5B), has recently been shown to direct de novo initiation using a number of complex RNA templates. In this study, we analyzed the features in simple RNA templates that are required to direct de novo initiation of RNA synthesis by HCV NS5B. NS5B was found to protect RNA fragments of 8 to 10 nucleotides (nt) from RNase digestion. However, NS5B could not direct RNA synthesis unless the template contained a stable secondary structure and a single-stranded sequence that contained at least one 3' cytidylate. The structure of a 25-nt template, named SLD3, was determined by nuclear magnetic resonance spectroscopy to contain an 8-bp stem and a 6-nt single-stranded sequence. Systematic analysis of changes in SLD3 revealed which features in the stem, loop, and 3' single-stranded sequence were required for efficient RNA synthesis. Also, chimeric molecules composed of DNA and RNA demonstrated that a DNA molecule containing a 3'-terminal ribocytidylate was able to direct RNA synthesis as efficiently as a sequence composed entirely of RNA. These results define the template sequence and structure sufficient to direct the de novo initiation of RNA synthesis by HCV RdRp.  相似文献   

5.
6.
The approximately 150 nt tRNA-like structure present at the 3' end of each of the brome mosaic virus (BMV) genomic RNAs is sufficient to direct minus-strand RNA synthesis. RNAs containing mutations in the tRNA-like structure that decrease minus-strand synthesis were tested for their ability to interact with RdRp (RNA-dependent RNA polymerase) using a template competition assay. Mutations that are predicted to disrupt the pseudoknot and stem B1 do not affect the ability of the tRNA-like structure to interact with RdRp. Similarly, the +1 and +2 nucleotides are not required for stable template-RdRp interaction. Mutations in the bulge and hairpin loops of stem C decreased the ability of the tRNA-like structure to interact with RdRp. Furthermore, in the absence of the rest of the BMV tRNA, stem C is able to interact with RdRp. The addition of an accessible initiation sequence containing ACCA3' to stem C created an RNA capable of directing RNA synthesis. Synthesis from this minimal minus-strand template is dependent on sequences in the hairpin and bulged loops.  相似文献   

7.
8.
The hepatitis C virus (HCV) core protein is a structural component of the nucleocapsid and has been shown to modulate cellular signaling pathways by interaction with various cellular proteins. In the present study, we investigated the role of HCV core protein in viral RNA replication. Immunoprecipitation experiments demonstrated that the core protein binds to the amino-terminal region of RNA-dependent RNA polymerase (RdRp), which encompasses the finger and palm domains. Direct interaction between HCV RdRp and core protein led to inhibition of RdRp RNA synthesis activity of in vitro. Furthermore, over-expression of core protein, but not its derivatives lacking the RdRp-interacting domain, suppressed HCV replication in a hepatoma cell line harboring an HCV subgenomic replicon RNA. Collectively, our results suggest that the core protein, through binding to RdRp and inhibiting its RNA synthesis activity, is a viral regulator of HCV RNA replication.  相似文献   

9.
Protein-RNA interaction plays a critical role in regulating RNA synthesis by the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp). RNAs of 7 nucleotides (nt) or longer had affinities 5-fold better than an RNA of 5 nt, suggesting a minimal length required for binding. To identify RNA contact sites on the HCV RdRp, a biotinylated 7-nt RNA capable of directing de novo initiation was used in a process that coupled reversible formaldehyde cross-linking, RNA affinity chromatography, and mass spectrometry. By this process, we identified 18 peptides cross-linked to the 7-nt RNA. When these identified peptides were overlaid on the three-dimensional structures of NS5B, most mapped to the fingers subdomain, connecting loops between fingers and thumb subdomains and in the putative RNA binding channel. Two of the identified peptides resided in the active site cavity of the RdRp. Recombinant HCV RdRp with single residue changes in likely RNA contact sites were generated and characterized for effects on HCV RdRp activity. Mutant proteins had significant effects on cross-linking to 7-nt RNA and reduced RNA synthesis in vitro by 2- to 20-fold compared with wild type protein. When the mutations were tested for the replication of HCV RNA in the context of the cells transfected with the HCV subgenomic replicon, all except one prevented colony formation, indicating a defect in HCV RNA replication. These biochemical and functional analyses identified a number of residues in the HCV RdRp that are important for HCV RNA synthesis.  相似文献   

10.
Cai Z  Liang TJ  Luo G 《Journal of virology》2004,78(7):3633-3643
Replication of nearly all RNA viruses depends on a virus-encoded RNA-dependent RNA polymerase (RdRp). Our earlier work found that purified recombinant hepatitis C virus (HCV) RdRp (NS5B) was able to initiate RNA synthesis de novo by using purine (A and G) but not pyrimidine (C and U) nucleotides (G. Luo et al., J. Virol. 74:851-863, 2000). For most human RNA viruses, the initiation nucleotides of both positive- and negative-strand RNAs were found to be either an adenylate (A) or guanylate (G). To determine the nucleotide used for initiation and control of HCV RNA replication, a genetic mutagenesis analysis of the nucleotides at the very 5' and 3' ends of HCV RNAs was performed by using a cell-based HCV replicon replication system. Either a G or an A at the 5' end of HCV genomic RNA was able to efficiently induce cell colony formation, whereas a nucleotide C at the 5' end dramatically reduced the efficiency of cell colony formation. Likewise, the 3'-end nucleotide U-to-C mutation did not significantly affect the efficiency of cell colony formation. In contrast, a U-to-G mutation at the 3' end caused a remarkable decrease in cell colony formation, and a U-to-A mutation resulted in a complete abolition of cell colony formation. Sequence analysis of the HCV replicon RNAs recovered from G418-resistant Huh7 cells revealed several interesting findings. First, the 5'-end nucleotide G of the replicon RNA was changed to an A upon multiple rounds of replication. Second, the nucleotide A at the 5' end was stably maintained among all replicon RNAs isolated from Huh7 cells transfected with an RNA with a 5'-end A. Third, initiation of HCV RNA replication with a CTP resulted in a >10-fold reduction in the levels of HCV RNAs, suggesting that initiation of RNA replication with CTP was very inefficient. Fourth, the 3'-end nucleotide U-to-C and -G mutations were all reverted back to a wild-type nucleotide U. In addition, extra U and UU residues were identified at the 3' ends of revertants recovered from Huh7 cells transfected with an RNA with a nucleotide G at the 3' end. We also determined the 5'-end nucleotide of positive-strand RNA of some clinical HCV isolates. Either G or A was identified at the 5' end of HCV RNA genome depending on the specific HCV isolate. Collectively, these findings demonstrate that replication of positive-strand HCV RNA was preferentially initiated with purine nucleotides (ATP and GTP), whereas the negative-strand HCV RNA replication is invariably initiated with an ATP.  相似文献   

11.
Current assays for the activity of viral RNA-dependent RNA polymerases (RdRps) are inherently end-point measurements, often requiring the use of radiolabeled or chemically modified nucleotides to detect reaction products. In an effort to improve the characterization of polymerases that are essential to the life cycle of RNA viruses and develop antiviral therapies that target these enzymes, a continuous nonradioactive assay was developed to monitor the activity of RdRps by measuring the release of pyrophosphate (PP(i)) generated during nascent strand synthesis. A coupled-enzyme assay method based on the chemiluminescent detection of PP(i), using ATP sulfurylase and firefly luciferase, was adapted to monitor poliovirus 3D polymerase (3D(pol)) and the hepatitis C virus nonstructural protein 5B (NS5B) RdRp reactions. Light production was dependent on RdRp and sensitive to the concentration of oligonucleotide primer directing RNA synthesis. The assay system was found to be amenable to sensitive kinetic studies of RdRps, requiring only 6nM 3D(pol) to obtain a reliable estimate of the initial velocity in as little as 4 min. The assay can immediately accommodate the use of both homopolymer and heteropolymer RNA templates lacking uridylates and can be adapted to RNA templates containing uridine by substituting alpha-thio ATP for ATP. The low background signal produced by other NTPs can be corrected from no enzyme (RdRp) controls. The effect of RdRp/RNA template preincubation was assessed using NS5B and a homopolymer RNA template and a time-dependent increase of RdRp activity was observed. Progress curves for a chain terminator (3(')-deoxyguanosine 5(')-triphosphate) and an allosteric NS5B inhibitor demonstrated the predicted time- and dose-dependent reductions in signal. This assay should facilitate detailed kinetic studies of RdRps and their potential inhibitors using either standard or single-nucleotide approaches.  相似文献   

12.
13.
Hepatitis C virus (HCV) NS5B protein possesses an RNA-dependent RNA polymerase (RdRp) activity, a major function responsible for replication of the viral RNA genome. To further characterize the RdRp activity, NS5B proteins were expressed from recombinant baculoviruses, purified to near homogeneity, and examined for their ability to synthesize RNA in vitro. As a result, a highly active NS5B RdRp (1b-42), which contains an 18-amino acid C-terminal truncation resulting from a newly created stop codon, was identified among a number of independent isolates. The RdRp activity of the truncated NS5B is comparable to the activity of the full-length protein and is 20 times higher in the presence of Mn(2+) than in the presence of Mg(2+). When a 384-nucleotide RNA was used as the template, two major RNA products were synthesized by 1b-42. One is a complementary RNA identical in size to the input RNA template (monomer), while the other is a hairpin dimer RNA synthesized by a "copy-back" mechanism. Substantial evidence derived from several experiments demonstrated that the RNA monomer was synthesized through de novo initiation by NS5B rather than by a terminal transferase activity. Synthesis of the RNA monomer requires all four ribonucleotides. The RNA monomer product was verified to be the result of de novo RNA synthesis, as two expected RNA products were generated from monomer RNA by RNase H digestion. In addition, modification of the RNA template by the addition of the chain terminator cordycepin at the 3' end did not affect synthesis of the RNA monomer but eliminated synthesis of the self-priming hairpin dimer RNA. Moreover, synthesis of RNA on poly(C) and poly(U) homopolymer templates by 1b-42 NS5B did not require the oligonucleotide primer at high concentrations (>/=50 microM) of GTP and ATP, further supporting a de novo initiation mechanism. These findings suggest that HCV NS5B is able to initiate RNA synthesis de novo.  相似文献   

14.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), encoded by nonstructural protein 5B (NS5B), is absolutely essential for the viral replication. Here we describe the development, characterization, and functional properties of the panel of monoclonal antibodies (mAbs) and specifically describe the mechanism of action of two mAbs inhibiting the NS5B RdRp activity. These mAbs recognize and bind to distinct linear epitopes in the fingers subdomain of NS5B. The mAb 8B2 binds the N-terminal epitope of the NS5B and inhibits both primer-dependent and de novo RNA synthesis. mAb 8B2 selectively inhibits elongation of RNA chains and enhances the RNA template binding by NS5B. In contrast, mAb 7G8 binds the epitope that contains motif G conserved in viral RdRps and inhibits only primer-dependent RNA synthesis by specifically targeting the initiation of RNA synthesis, while not interfering with the binding of template RNA by NS5B. To reveal the importance of the residues of mAb 7G8 epitope for the initiation of RNA synthesis, we performed site-directed mutagenesis and extensively characterized the functionality of the HCV RdRp motif G. Comparison of the mutation effects in both in vitro primer-dependent RdRp assay and cellular transient replication assay suggested that mAb 7G8 epitope amino acid residues are involved in the interaction of template-primer or template with HCV RdRp. The data presented here allowed us to describe the functionality of the epitopes of mAbs 8B2 and 7G8 in the HCV RdRp activity and suggest that the epitopes recognized by these mAbs may be useful targets for antiviral drugs.  相似文献   

15.
Cai Z  Yi M  Zhang C  Luo G 《Journal of virology》2005,79(18):11607-11617
Hepatitis C virus (HCV) nonstructural protein 5B (NS5B) is the virus-encoded RNA-dependent RNA polymerase (RdRp) essential for HCV RNA replication. An earlier crystallographic study identified a rGTP-specific binding site lying at the surface between the thumb domain and the fingertip about 30 A away from the active site of the HCV RdRp (S. Bressanelli, L. Tomei, F. A. Rey, and R. De Francesco, J. Virol 76:3482-3492, 2002). To determine its physiological importance, we performed a systematic mutagenesis analysis of the rGTP-specific binding pocket by amino acid substitutions. Effects of mutations of the rGTP-specific binding site on enzymatic activity were determined by an in vitro RdRp assay, while effects of mutations on HCV RNA replication were examined by cell colony formation, as well as by transient replication of subgenomic HCV RNAs. Results derived from these studies demonstrate that amino acid substitutions of the rGTP-specific binding pocket did not significantly affect the in vitro RdRp activity of purified recombinant NS5B proteins, as measured by their abilities to synthesize RNA on an RNA template containing the 3' untranslated region of HCV negative-strand RNA. However, most mutations of the rGTP-specific binding site either impaired or completely ablated the ability of subgenomic HCV RNAs to induce cell colony formation. Likewise, these mutations caused either reduction in or lethality to transient replication of the human immunodeficiency virus Tat-expressing HCV replicon RNAs in the cell. Collectively, these findings demonstrate that the rGTP-specific binding site of the HCV NS5B is not required for in vitro RdRp activity but is important for HCV RNA replication in vivo.  相似文献   

16.
Flock House virus (FHV) is a positive-stranded RNA virus with a bipartite genome of RNAs, RNA1 and RNA2, and belongs to the family Nodaviridae. As the most extensively studied nodavirus, FHV has become a well-recognized model for studying various aspects of RNA virology, particularly viral RNA replication and antiviral innate immunity. FHV RNA1 encodes protein A, which is an RNA-dependent RNA polymerase (RdRP) and functions as the sole viral replicase protein responsible for RNA replication. Although the RNA replication of FHV has been studied in considerable detail, the mechanism employed by FHV protein A to initiate RNA synthesis has not been determined. In this study, we characterized the RdRP activity of FHV protein A in detail and revealed that it can initiate RNA synthesis via a de novo (primer-independent) mechanism. Moreover, we found that FHV protein A also possesses a terminal nucleotidyl transferase (TNTase) activity, which was able to restore the nucleotide loss at the 3′-end initiation site of RNA template to rescue RNA synthesis initiation in vitro, and may function as a rescue and protection mechanism to protect the 3′ initiation site, and ensure the efficiency and accuracy of viral RNA synthesis. Altogether, our study establishes the de novo initiation mechanism of RdRP and the terminal rescue mechanism of TNTase for FHV protein A, and represents an important advance toward understanding FHV RNA replication.  相似文献   

17.
The NS5B protein, or RNA-dependent RNA polymerase of the hepatitis virus type C, catalyzes the replication of the viral genomic RNA. Little is known about the recognition domains of the viral genome by the NS5B. To better understand the initiation of RNA synthesis on HCV genomic RNA, we used in vitro transcribed RNAs as templates for in vitro RNA synthesis catalyzed by the HCV NS5B. These RNA templates contained different regions of the 3' end of either the plus or the minus RNA strands. Large differences were obtained depending on the template. A few products shorter than the template were synthesized by using the 3' UTR of the (+) strand RNA. In contrast the 341 nucleotides at the 3' end of the HCV minus-strand RNA were efficiently copied by the purified HCV NS5B in vitro. At least three elements were found to be involved in the high efficiency of the RNA synthesis directed by the HCV NS5B with templates derived from the 3' end of the minus-strand RNA: (a) the presence of a C residue as the 3' terminal nucleotide; (b) one or two G residues at positions +2 and +3; (c) other sequences and/or structures inside the following 42-nucleotide stretch. These results indicate that the 3' end of the minus-strand RNA of HCV possesses some sequences and structure elements well recognized by the purified NS5B.  相似文献   

18.
RNA-dependent RNA polymerases (RdRps) that initiate RNA synthesis by a de novo mechanism should specifically recognize the template initiation nucleotide, T1, and the substrate initiation nucleotide, the NTPi. The RdRps from hepatitis C virus (HCV), bovine viral diarrhea virus (BVDV), and GB virus-B all can initiate RNA synthesis by a de novo mechanism. We used RNAs and GTP analogs, respectively, to examine the use of the T1 nucleotide and the initiation nucleotide (NTPi) during de novo initiation of RNA synthesis. The effects of the metal ions Mg(2+) and Mn(2+) on initiation were also analyzed. All three viral RdRps require correct base pairing between the T1 and NTPi for efficient RNA synthesis. However, each RdRp had some distinct tolerances for modifications in the T1 and NTPi. For example, the HCV RdRp preferred an NTPi lacking one or more phosphates regardless of whether Mn(2+) was present or absent, while the BVDV RdRp efficiently used GDP and GMP for initiation of RNA synthesis only in the presence of Mn(2+). These and other results indicate that although the three RdRps share a common mechanism of de novo initiation, each has distinct preferences.  相似文献   

19.
C C Kao  J H Sun 《Journal of virology》1996,70(10):6826-6830
Various DNA- and RNA-dependent RNA polymerases have been reported to use oligoribonucleotide primers to initiate nucleic acid synthesis. For the brome mosaic virus RNA-dependent RNA polymerase (RdRp), we determined that in reactions performed with limited GTP concentrations, minus-strand RNA synthesis can be stimulated by the inclusion of guanosine monophosphate or specific oligoribonucleotides. Furthermore, guanylyl-3',5'-guanosine (GpG) was incorporated into minus-strand RNA and increased the rate of minus-strand RNA synthesis. In the presence of GpG, RdRp's Km for GTP decreased from 50 microM to approximately 3 microM while the Kms for other nucleotides were unaffected. These results have implications for the mechanism of initiation by RdRp.  相似文献   

20.
丙型肝炎病毒依赖于RNA的RNA聚合酶(RdRp)研究进展   总被引:2,自引:0,他引:2  
由于缺乏合适的HCV感染细胞模型,严重制约了HCV复制,特别是HCV复制的关键因子依赖于RNA的RNA聚合酶(RdRp)的研究.对HCV序列比较分析并通过异源表达证明NS5B是HCV复制的RdRp.NS5B C端疏水性氨基酸区域以及NS5B与细胞膜形成复合体等影响NS5B溶解性.在合适的反应条件下NS5B可以多种RNA分子为模板催化RNA复制,特别是能有效复制HCV全长(+)RNA.高浓度GTP激活HCV RdRp活性.NS5B N/C端缺失突变和保守性A、B、C区中的点突变影响RdRp活性,但D区345位精氨酸突变为赖氨酸时RdRp活性明显升高.HCV RdRp的发现及其功能研究为HCV药物研究提供了新型靶标.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号