首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asthma is a chronic inflammatory disorder of the airways interacting with altered structure and function of the formed elements including smooth muscle. While atopy and polarization of the airway T-cell response toward a Th-2 phenotype are important factors in asthma pathogenesis, there is increasing realization that remodeling events are also important. Evidence is presented that inflammation and altered airway structure in asthma interact through the epithelium and underlying mesenchyme. As in other chronic inflammatory disorders, a dynamic interplay between mediators, cytokines, and growth factors provides a broader base on which to identify novel preventative and therapeutic strategies in asthma.  相似文献   

2.
Asthma is a common increasing and relapsing disease that is associated with genetic and environmental factors such as respiratory viruses and allergens. It causes significant morbidity and mortality. The changes occurring in the airways consist of a chronic eosinophilic and lymphocytic inflammation, together with epithelial and structural remodeling and proliferation, and altered matrix proteins, which underlie airway wall narrowing and bronchial hyperresponsiveness (BHR). Several inflammatory mediators released from inflammatory cells such as histamine and cysteinyl-leukotrienes induce bronchoconstriction, mucus production, plasma exudation, and BHR. Increased expression of T-helper 2 (Th2)-derived cytokines such as interleukin-4 and 5 (IL-4,5) have been observed in the airway mucosa, and these may cause IgE production and terminal differentiation of eosinophils. Chemoattractant cytokines (chemokines) such as eotaxin may be responsible for the chemoattraction of eosinophils to the airways. The initiating events are unclear but may be genetically determined and may be linked to the development of a Th2-skewed allergen-specific immunological memory. The use of molecular biology techniques on tissues obtained from asthmatics is increasing our understanding of the pathophysiology of asthma. With the application of functional genomics and the ability to transfer or delete genes, important pathyways underlying the cause if asthma will be unraveled. The important outcome of this is that new preventive and curative treatments may ensue.  相似文献   

3.
Wheezing during infancy has been linked to early loss of pulmonary function. We prospectively investigated the relation between bronchial hyperresponsiveness (BHR) and progressive impairment of pulmonary function in a cohort of asthmatic infants followed until age 9 years. We studied 129 infants who had had at least three episodes of wheezing. Physical examinations, baseline lung function tests and methacholine challenge tests were scheduled at ages 16 months and 5, 7 and 9 years. Eighty-three children completed follow-up. Twenty-four (29%) infants had wheezing that persisted at 9 years of age. Clinical outcome at age 9 years was significantly predicted by symptoms at 5 years of age and by parental atopy. Specific airway resistance (sRaw) was altered in persistent wheezers as early as 5 years of age, and did not change thereafter. Ninety-five per cent of the children still responded to methacholine at the end of follow-up. The degree of BHR at 9 years was significantly related to current clinical status, baseline lung function, and parental atopy. BHR at 16 months and 5 years of age did not predict persistent wheezing between 5 and 9 years of age, or the final degree of BHR, but it did predict altered lung function. Wheezing that persists from infancy to 9 years of age is associated with BHR and to impaired lung function. BHR itself is predictive of impaired lung function in children, strongly pointing to early airway remodeling in infantile asthma.  相似文献   

4.
Chronic airway inflammation is one of the main features of asthma. Release of mediators from infiltrating inflammatory cells in the airway mucosa has been proposed to contribute directly or indirectly to changes in airway structure and function. The airway smooth muscle, which has been regarded as a contractile component of the airways responding to various mediators and neurotransmitters, has recently been recognised as a rich source of pro-inflammatory cytokines, chemokines and growth factors. In this review, we discuss the role of airway smooth muscle cells in the regulation and perpetuation of airway inflammation that contribute to the pathogenesis of asthma.  相似文献   

5.
Chronic airway inflammation is one of the main features of asthma. Release of mediators from infiltrating inflammatory cells in the airway mucosa has been proposed to contribute directly or indirectly to changes in airway structure and function. The airway smooth muscle, which has been regarded as a contractile component of the airways responding to various mediators and neurotransmitters, has recently been recognised as a rich source of pro-inflammatory cytokines, chemokines and growth factors. In this review, we discuss the role of airway smooth muscle cells in the regulation and perpetuation of airway inflammation that contribute to the pathogenesis of asthma.  相似文献   

6.
When administered to mice systemically or via the airways, LPS induces bronchoconstriction (BC) and/or bronchopulmonary hyperreactivity (BHR), associated with inflammation. Accordingly, a relationship between inflammation and allergic and nonallergic BHR can be hypothesized. We therefore studied the interference of the anti-inflammatory cytokine murine IL-10 (mIL-10) with LPS-induced lung inflammation, BC, and BHR. mIL-10 was administered directly into the airways by intranasal instillation or generated in vivo after muscle electrotransfer of mIL-10-encoding plasmid. Electrotransfer led to high mIL-10 circulating levels for a longer time than after the injection of recombinant mIL-10 (rmIL-10). rmIL-10 administered intranasally reduced lung inflammation and BHR after LPS administration into airways. It also reduced the ex vivo production of TNF-alpha by LPS-stimulated lung tissue explants. Two days after electrotransfer, mIL-10 blood levels were elevated, but lung inflammation, BC, and BHR persisted unaffected. Blood mIL-10 reaches the airways poorly, which probably accounts for the ineffectiveness of mIL-10-encoding plasmid electrotransfer. When LPS was aerosolized 15 days after electrotransfer, lung inflammation persisted but BHR was significantly reduced, an effect that may be related to the longer exposure of the relevant cells to mIL-10. The dissociation between inflammation and BHR indicates that both are not directly correlated. In conclusion, this study shows that mIL-10 is efficient against BHR when present in the airway compartment. Despite this, the muscle electrotransfer with mIL-10-encoding plasmid showed a protective effect against BHR after a delay of 2 wk that should be further investigated.  相似文献   

7.
Epithelium-fibroblast interactions in response to airway inflammation   总被引:11,自引:0,他引:11  
Dramatic changes to the architecture of the airway walls have been commonly described in the airways of patients with asthma, cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Much research has focused on how airway inflammation drives these structural changes, particularly in terms of the mechanisms/mediators that are involved, and a number of parallels are observed between the disease phenotypes. For example, the increased deposition of extracellular matrix (ECM) at focal sites in the airway wall is seen in asthma and all interstitial lung diseases that involve fibrosis. In addition, increased expression of a number of well characterized cytokines and growth factors, such as TGF-beta and epidermal growth factor (EGF) have been demonstrated in these diseases. However, the role of the lesser-known cytokines, including the leukaemia inhibitory factor (LIF) and other members of the IL-6 family of cytokines in the pathogenesis of airway remodelling and fibrosis is largely unknown. However, the use of genetic manipulation in vivo and more specific inhibitors/antibodies in vitro has now provided increasing evidence to support the hypothesis that a complex interaction exists between these cytokines, ECM and integrins in regulating the function of both epithelial cells and fibroblasts.  相似文献   

8.
The airway epithelium in asthma   总被引:1,自引:0,他引:1  
Asthma is a T lymphocyte-controlled disease of the airway wall caused by inflammation, overproduction of mucus and airway wall remodeling leading to bronchial hyperreactivity and airway obstruction. The airway epithelium is considered an essential controller of inflammatory, immune and regenerative responses to allergens, viruses and environmental pollutants that contribute to asthma pathogenesis. Epithelial cells express pattern recognition receptors that detect environmental stimuli and secrete endogenous danger signals, thereby activating dendritic cells and bridging innate and adaptive immunity. Improved understanding of the epithelium's function in maintaining the integrity of the airways and its dysfunction in asthma has provided important mechanistic insight into how asthma is initiated and perpetuated and could provide a framework by which to select new therapeutic strategies that prevent exacerbations and alter the natural course of the disease.  相似文献   

9.
Although basic mechanisms of bronchial hyper-responsiveness (BHR) are still incompletely understood, inflammation of airways is likely to play a fundamental role in modulating BHR in patients with asthma. The involvement of several inflammatory cells (eosinophils, mast cells, lymphocytes, neutrophils, macrophages and platelets) and of bioactive mediators secreted by these cells in the pathogenesis of asthma is well documented. Sodium cromoglycate and nedocromil sodium are two pharmacological agents which have anti-allergic and anti-inflammatory properties. Their clinical effectiveness in mild to moderate asthma, and the capacity to reduce BHR under different natural and experimental conditions, make them valuable drugs for maintenance therapy in patients with asthma.  相似文献   

10.
Allergic asthma is an inflammatory disease of the airways characterized by eosinophilic inflammation and airway hyper-reactivity. Cytokines and chemokines specific for Th2-type inflammation predominate in asthma and in animal models of this disease. The role of Th1-type inflammatory mediators in asthma remains controversial. IFN-gamma-inducible protein 10 (IP-10; CXCL10) is an IFN-gamma-inducible chemokine that preferentially attracts activated Th1 lymphocytes. IP-10 is up-regulated in the airways of asthmatics, but its function in asthma is unclear. To investigate the role of IP-10 in allergic airway disease, we examined the expression of IP-10 in a murine model of asthma and the effects of overexpression and deletion of IP-10 in this model using IP-10-transgenic and IP-10-deficient mice. Our experiments demonstrate that IP-10 is up-regulated in the lung after allergen challenge. Mice that overexpress IP-10 in the lung exhibited significantly increased airway hyperreactivity, eosinophilia, IL-4 levels, and CD8(+) lymphocyte recruitment compared with wild-type controls. In addition, there was an increase in the percentage of IL-4-secreting T lymphocytes in the lungs of IP-10-transgenic mice. In contrast, mice deficient in IP-10 demonstrated the opposite results compared with wild-type controls, with a significant reduction in these measures of Th2-type allergic airway inflammation. Our results demonstrate that IP-10, a Th1-type chemokine, is up-regulated in allergic pulmonary inflammation and that this contributes to the airway hyperreactivity and Th2-type inflammation seen in this model of asthma.  相似文献   

11.
Among the 22 members of the nucleotide binding-domain, leucine rich repeat-containing (NLR) family, less than half have been functionally characterized. Of those that have been well studied, most form caspase-1 activating inflammasomes. NLRP12 is a unique NLR that has been shown to attenuate inflammatory pathways in biochemical assays and mediate the lymph node homing of activated skin dendritic cells in contact hypersensitivity responses. Since the mechanism between these two important observations remains elusive, we further evaluated the contribution of NLRP12 to organ specific adaptive immune responses by focusing on the lung, which, like skin, is exposed to both exogenous and endogenous inflammatory agents. In models of allergic airway inflammation induced by either acute ovalbumin (OVA) exposure or chronic house dust mite (HDM) antigen exposure, Nlrp12(-/-) mice displayed subtle differences in eosinophil and monocyte infiltration into the airways. However, the overall development of allergic airway disease and airway function was not significantly altered by NLRP12 deficiency. Together, the combined data suggest that NLRP12 does not play a vital role in regulating Th2 driven airway inflammation using common model systems that are physiologically relevant to human disease. Thus, the allergic airway inflammation models described here should be appropriate for subsequent studies that seek to decipher the contribution of NLRP12 in mediating the host response to agents associated with asthma exacerbation.  相似文献   

12.
Asthma is a common respiratory disease that is characterized by variable airways obstruction caused by acute and chronic bronchial inflammation; associated phenotypes include bronchial hyperresponsiveness (BHR), elevated total serum immunoglobulin E (IgE) levels, and skin tests positive to common allergens. Binding of interleukin-13 (IL13) or interleukin-4 (IL4) to the IL4 receptor (IL4R) induces the initial response for Th2 lymphocyte polarization. Both IL13 and IL4 are produced by Th2 cells and are capable of inducing isotype class-switching of B-cells to produce IgE after allergen exposure. These cytokines also share a common receptor component, IL4R alpha. We have investigated five IL4RA single-nucleotide polymorphisms in a population of Dutch families ascertained through a proband with asthma. By considering the probands and their spouses as an unrelated sample, we observed significant associations of atopy and asthma-related phenotypes with several IL4RA polymorphisms, including S478P and total serum IgE levels (P=.0007). A significant gene-gene interaction between S478P in IL4RA and the -1111 promoter variation in IL13, previously shown to be associated with BHR (P=.003), was detected. Individuals with the risk genotype for both genes were at almost five times greater risk for the development of asthma compared to individuals with both non-risk genotypes (P=.0004). These data suggest that variations in IL4RA contribute to elevated total serum IgE levels, and interaction between IL4RA and IL13 markedly increases an individual's susceptibility to asthma.  相似文献   

13.
14.
Integrity of the airway epithelium (AE) is important in the context of inhaled allergens and noxious substances, particularly during asthma-related airway inflammation where there is increased vulnerability of the AE to cell death. Apoptosis involves a number of signaling pathways which activate procaspases leading to cleavage of critical substrates. Understanding the factors which regulate AE caspases is important for development of strategies to minimize AE damage and airway inflammation, and therefore to better control asthma. One such factor is the essential dietary metal zinc. Zinc deficiency results in enhanced AE apoptosis, and worsened airway inflammation. This has implications for asthma, where abnormalities in zinc homeostasis have been observed. Zinc is thought to suppress the steps involved in caspase-3 activation. One target of zinc is the family of inhibitor of apoptosis proteins (IAPs) which are endogenous regulators of caspases. More studies are needed to identify the roles of IAPs in regulating apoptosis in normal and inflamed airways and to study their interaction with labile zinc ions. This new information will provide a framework for future clinical studies aimed at monitoring and management of airway zinc levels as well as minimising airway damage and inflammation in asthma.  相似文献   

15.
Inhibiting allergic airway inflammation is the goal of therapy in persistent asthma. Administration of medication via the airways delivers drug directly to the site of inflammation and avoids systemic side effects but often fails to modulate systemic features of asthma. We have shown that Th1 cells, through production of IFN-γ, inhibit many Th2-induced effector functions that promote disease. Using a newly generated mouse that expresses IFN-γR only on airway epithelial cells, we show that the airway epithelium controls a range of pathological responses in asthma. IFN-γ acting only through the airway epithelium inhibits mucus, chitinases, and eosinophilia, independent of Th2 cell activation. IFN-γ signaling through the airway epithelium inhibits eosinophil generation in the bone marrow, indicating that signals on the airway mucosal surface can regulate distant functions to inhibit disease. IFN-γ actions through the airway epithelium will limit airway obstruction and inflammation and may be therapeutic in refractory asthma.  相似文献   

16.
Apoptosis and airway inflammation in asthma   总被引:2,自引:0,他引:2  
Asthma is a disease characterized by a chronic inflammation of the airways and by structural alterations of bron-chial tissues, often referred to as airway remodelling. The development of chronic airway inflammation in asthma depends upon the continuous recruitment of inflammatory cells from the bloodstream towards the bronchial mucosa and by their subsequent activation. It is however increasingly accepted that mechanisms involved in the regulation of the survival and apoptosis of inflammatory cells may play a central role in the persistent inflammatory process characterizing this disease. Increased cellular recruitment and activation, enhanced cell survival and cell:cell interactions are therefore the key steps in the development of chronic airway inflammation in asthma, and represent the major causes for tissue damge, repair and remodelling.  相似文献   

17.
Respiratory syncytial virus (RSV) infection in early life is suspected to play a role in the development of post-bronchiolitis wheezing and asthma. Reinfection is common at all ages, but factors that determine the development of altered airway function after reinfection are not well understood. This study was conducted in a mouse model to define the role of age in determining the consequences on airway function after reinfection. Mice were infected shortly after birth or at weaning and were reinfected 5 wk later, followed by assessment of airway function, airway inflammation, and lung histopathology. Infection of mice at weaning elicited a protective airway response upon reinfection. In this age group, reinfection resulted in increased airway inflammation, but without development of airway hyperresponsiveness (AHR) or eosinophilia and decreased IL-13 levels. By contrast, neonatal infection failed to protect the airways and resulted in enhanced AHR after reinfection. This secondary response was associated with the development of airway eosinophilia, increased IL-13 levels, and mucus hyperproduction. Both CD4- and CD8-positive T cells were a source of IL-13 in the lung, and inhibition of IL-13 abolished AHR and mucus production in these mice. Inoculation of UV-inactivated virus failed to elicit these divergent responses to reinfection, emphasizing the requirement for active lung infection during initial exposure. Thus, neonatal RSV infection predisposes to the development of airway eosinophilia and enhanced AHR via an IL-13-dependent mechanism during reinfection, whereas infection at a later age protects against the development of these altered airway responses after reinfection.  相似文献   

18.
Asthma is one of the most common chronic inflammatory disorder of the airways of the lungs, affecting more than 300 million people all over the world. Nitric oxide (NO) is endogenously produced in mammalian airways by nitric oxide synthase (NOS) and is known to regulate many aspects of human asthma, including the modulation of airway and vascular smooth muscle tone and the inflammation. Asthmatic patients show an increased expression of inducible nitric oxide synthase (iNOS) in airway epithelial cells and an increased level of NO in exhaled air. Using various NO inhibitors (non-specific or iNOS-specific) and gene knock-out experiments, controversial results have been obtained regarding iNOS's beneficial and deleterious effects in the disease. In the present review, we have attempted to summarize the results of these experiments and also the genetic studies being undertaken to understand the role of iNOS in asthma. It is argued that extensive biochemical, clinical and genetic studies will be required to assess the precise role of NO in the asthma. This may help in designing selective and more potent iNOS inhibitors and NO donors for developing novel therapeutics for the asthma patients.  相似文献   

19.
The heptadecapeptide nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand for the N/OFQ peptide (NOP) receptor. It is cleaved from a larger precursor identified as prepronociceptin (ppN/OFQ). NOP is a member of the seven transmembrane-spanning G-protein coupled receptor (GPCR) family. ppN/OFQ and NOP receptors are widely distributed in different human tissues. Asthma is a complex heterogeneous disease characterized by variable airflow obstruction, bronchial hyper-responsiveness and chronic airway inflammation. Limited therapeutic effectiveness of currently available asthma therapies warrants identification of new drug compounds. Evidence from animal studies suggests that N/OFQ modulates airway contraction and inflammation. Interestingly up regulation of the N/OFQ–NOP system reduces airway hyper-responsiveness. In contrast, inflammatory cells central to the inflammatory response in asthma may be both sources of N/OFQ and respond to NOP activation. Hence paradoxical dysregulation of the N/OFQ–NOP system may potentially play an important role in regulating airway inflammation and airway tone. To date there is no data on N/OFQ–NOP expression in the human airways. Therefore, the potential role of N/OFQ–NOP system in asthma is unknown. This review focuses on its physiological effects within airways and potential value as a novel asthma therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号