首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The influence of phytohormones, salicylic acid (SA) and methyl jasmonate (MJ) on the antioxidant systems in Haematococcus pluvialis was investigated. Both SA and MJ at 500 μM concentration reduced the growth of alga with salicylic acid, having more pronounced effect. Carotenoid and chlorophyll contents were decreased by SA and increased by MJ. Salicylic acid (100 μM) increased astaxanthin content to 6.8-fold under low light (30 μmol m−2 s−1), while MJ (10 μM) showed marginal increase in astaxanthin. Salicylic acid (500 μM) increased superoxide dismutase activity to 4.5- and 3.3-fold and ascorbate peroxidase (APX) activity to 15.5- and 7.1-fold under low and high light, respectively. Methyl jasmonate increased catalase activity (1.4-fold) under high light and APX activity (5.4-fold) under low light. Different mechanism of oxidative stress induced antioxidant production may be the plausible reason for this varied response for salicylic acid and methyl jasmonate. Higher concentrations of SA and MJ inhibited astaxanthin accumulation by different mechanisms either by scavenging the free radicals or by increasing primary carotenoids production. At lower concentrations, these phytohormones could be used for elicitation of secondary carotenoid production.  相似文献   

2.
【目的】银杏提取物在防治心血管系统和神经系统疾病方面发挥重要功能。鉴于肠道菌群已被认定为一个新兴的药物作用靶标,研究银杏双黄酮和银杏内酯与人体肠道菌群之间的相互作用具有非常重要的意义,这将为进一步理解银杏提取物的功能和作用机制奠定基础。【方法】本研究使用人体肠道菌群体外批量发酵、细菌总量测定、细菌16S rDNA高通量测序、气相色谱和液相色谱检测等方法,对银杏双黄酮和银杏内酯B单独或复合在体外与人体肠道菌群的相互作用进行研究。【结果】银杏双黄酮和银杏内酯B单独添加对人体肠道菌群总量、肠道菌群结构组成和短链脂肪酸产量没有显著影响。但有意思的是,复合添加银杏双黄酮和银杏内酯B后,Coriobacteriaceae科和Cupriavidus属细菌的比例显著升高,Gemella菌细菌比例显著降低。功能基因预测分析发现,编码K00076、K12143、K07716和K00220的基因在复合添加银杏双黄酮和银杏内酯B后显著富集。K00076和K00220是氧化还原酶,催化CH-OH供体基团的电子转移,可能参与银杏双黄酮和银杏内酯B的代谢和修饰。HPLC检测发现,人体肠道菌群体外对银杏双黄酮和银杏内脂B的降解修饰率分别为70%和35%左右。【结论】体外复合添加银杏双黄酮和银杏内酯B可显著改变肠道某些细菌的丰度。同时,体外研究表明肠道菌群具有代谢修饰银杏双黄酮和银杏内酯B的功能。  相似文献   

3.
The effect of biotic elicitors on the production of bilobalide and ginkgolides in Ginkgo biloba cell suspension cultures was studied. The treatment of cell cultures with Candida albicans and Staphylococcus aureus as elicitors increased the amounts of bilobalide (BB), ginkgolide A (GA) and ginkgolide B (GB), with slight growth inhibition. The native bacterial elicitor was more effective for secondary metabolite accumulations both in cells and culture medium than autoclaved. However, exposure times of the cells to the elicitors strongly influenced the production of BB, GA and GB. This study suggests that biotic elicitors can regulate the production of BB, GA and GB either directly or indirectly. These results also describe the establishment of optimum conditions that determine the effects of biotic elicitors on secondary metabolism of bilobalides.  相似文献   

4.
The effects of a number of different elicitors on asiaticoside production in whole plant cultures of Centella asiatica were studied, including yeast extract, CdCl2, CuCl2 and methyl jasmonate (MJ). Only MJ and yeast extract stimulated asiaticoside production—1.53 and 1.41-fold, respectively. Maximum asiaticoside production was achieved following treatment with 0.1 mM MJ (116.8 mg/l). The highest asiaticoside production (342.72 mg/l) was obtained after 36 days of elicitation in cultures treated with 0.1 mM MJ and 0.025 mg/l 1-phenyl-3-(1,2,3-thidiazol-5-yl)urea (TDZ). Interestingly, MJ not only stimulated the production of asiaticoside but also had an important role in the senescence of C. asiatica. Although asiaticoside content did not change when TDZ was added to medium containing an elicitor, TDZ did increase shoot growth of C. asiatica. We discuss the interactive roles of MJ and TDZ in secondary metabolic production and biomass in whole plants of C. asiatica  相似文献   

5.
In plant tissue, a wound signal is produced at the site of injury and propagates or migrates into adjacent tissue where it induces increased phenylalanine ammonia lyase (PAL, EC 4.3.1.5) activity and phenylpropanoid metabolism. We used excised mid-rib leaf tissue from Romaine lettuce (Lactuca sativa L., Longifolia) as a model system to examine the involvement of components of the phospholipid-signaling pathway in wound-induced phenolic metabolism. Exposure to 1-butanol vapors or solutions inhibited wound-induced increase in PAL activity and phenolic metabolism. Phospholipases D (EC 3.1.4.4), an enzyme involved in the phospholipid-signaling pathway is specifically inhibited by 1-butanol. Re-wounding tissue, in which an effective 1-butanol concentration had declined below active levels by evaporation, did not elicit the normal wound response. It appears the 1-butanol-treated tissue developed resistance to wound-induced increases in phenylpropanoid metabolism that persisted even when active levels of 1-butanol were no longer present. However, a metabolic product of 1-butanol, rather than 1-butanol itself, may be the active compound eliciting persistence resistance. Inhibiting a subsequent enzyme in the phospholipid-signaling pathway, lipoxygenase (LOX; EC 1.13.11.12) with 1-phenyl-3-pyrazolidinone (1P3P) or reducing the product of LOX activity with diethyldithio-carbamic acid (DIECA) also inhibited wound-induced PAL activity and phenolic accumulation. The effectiveness of 1-butanol, DIECA, and 1P3P declined as the beginning of the 1-h immersion period was delayed from 0 to 4 h after excision. This decline in effectiveness is consistent with involvement of the inhibitors in the production or propagation of a wound signal. The wound signal in lettuce moves into adjacent tissue at 0.5 cm h−1, so delaying application would allow the signal to move into and induce the wound response in adjacent tissue before the delayed application inhibited synthesis of the signal. Salicylic acid (SA) inhibits allene oxide synthase (AOS, EC 4.2.1.92), another enzyme in the phospholipid-signaling pathway. Exposure to 1 or 10 mM SA for 60 min reduced wound-induced phenolic accumulation by 26 or 56%, respectively. However, 1 mM SA lost its effectiveness if applied 3 h after excision, while 10 mM SA remained effective even when applied 4 h after excision. At 1 mM, SA may be perturbing the wound signal through inhibition of AOS, while at 10 mM it appears to have some generally inhibitory effect on subsequent phenolic metabolism. These data further implicate the phospholipid-signaling pathway in the generation of a wound signal that induces phenolic metabolism in wounded leaf tissue.  相似文献   

6.
Summary The glutathione-glutathione disulfide redox pair was utilized to improve white spurce somatic embryo development. Mature cotyledonary-stage somatic embryos were divided into two groups (A and B) based on morphological normality and the ability of the mature somatic embryos to convert into plantlets. Group A embryos had four or more cotyledons and converted readily upon germination after a partial drying treatment. Group B embryos had three or fewer cotyledons with a low conversion frequency. The addition of reduced glutathione (GSH) at a concentration of 0.1 mM resulted in an increase in embryo production (total population) with a mean total number of 64 embryos per 100 mg embryogenic tissue as well as an increase in post-embryonic root growth. However, at a higher concentration (1 mM), GSH inhibited embryo formation. The manipulation of the tissue culture environment via the inclusion of glutathione disulfide (GSSG), at concentrations of 0.1 and 1.0 mM, enhanced the development of better-quality embryos. This quality was best exemplified when embryos forming four or more cotyledons increased by at least twofold to 73.9% when treated with 1.0 mM GSSG, compared to 38% in control. Furthermore, this improved quality was reflected by an increased conversion frequency. A 20% increase in the ability of the somatic embryo to produce both root and shoot structures during post-embryonic development was noted when embryos were matured on maturation medium supplemented with 1.0 mM GSSG over the control.  相似文献   

7.
Summary Elicitation of anthocyanin-producing cells of ohelo (Vaccinium pahalae) by both biotic (purified β-glucan and chitosan) and abiotic [sodium ferric ethylenediamine di-(o-hydroxyphenylacetate) FeEDDHA, and CuSO4] elicitors resulted in significant enhancement of anthocyanin accumulation. Anthocyanin production increased up to 1.8 and 1.5-fold over the control in the presence of abiotic elicitors (90 μM FeEDDHA and 20 μM CuSO4, respectively), and increased 1.9 and 1.6-fold in the presence of biotic elicitors (10 mg L−1 β-glucan and 100 mg L−1 chitosan). Maximum anthocyanin production with the two most effective elicitors was achieved when cultures were treated on Day 3 (β-glucan) or Day 0 (FeEDDHA) after the initiation of fresh cell cultures. A concentration-dependent response was exhibited by cultures treated with exogenous methyl jasmonate (MJ). The addition of 0.5 μM MJ alone provoked a 2–3-fold increase in anthocyanin production over that of the control; however, no additive effect on anthocyanin production was observed in any treatments which combined MJ and β-glucan or FeEDDHA. Conditioning of the cells with a preculture in either MJ, β-glucan, or FeEDDHA similarly did not enhance anthocyanin production. Inoculation of cultures elicited by MJ or β-glucan with ibuprofen, a reported inhibitor of jasmonate biosynthesis, dramatically stimulated, rather than inhibited, anthocyanin production, resulting in levels of accumulation beyond any of the tested elicitor combinations. Hypotheses for the observed influence of ibuprofen in this system are discussed.  相似文献   

8.
Zhang ZX  Qi XY  Xu YQ 《生理学报》2003,55(1):24-28
应用全细胞膜片钳及激光共聚焦技术 ,研究银杏苦内酯B(ginkgolideB ,GB)对豚鼠心室肌细胞L 型钙电流及胞内游离钙的作用 ,并探讨GB心肌保护作用的机制。实验结果显示 ,在指令电压为 0mV时 ,GB对生理状态下豚鼠心室肌细胞L 型钙电流无明显作用。在模拟缺血状态下 ,L 型钙峰值电流减小 3 7 71% ,但加入 1μmol/LGB后 ,可逆转缺血引起的L 型钙电流的降低 ,与缺血对照组比较 ,有显著性差异 (P <0 0 5 )。 1μmol/LGB能使由于模拟缺血而上移的L 型钙电流 电压曲线回复正常。在生理状态下 ,0 1、1、10mol/LGB分别使心肌细胞内游离钙降低 10 5 8%(n =12 )、17 2 7% (n =12 )、16 3 5 % (n =10 ) ,与对照组相比有非常显著性差异。模拟缺血液灌流 12min时 ,细胞内游离钙浓度增加 2 0 15 % ,在模拟缺血液中分别加入 1μmol/Lnifedipine或 5mmol/LNiCl2 ,结果显示 :模拟缺血液灌流 12min ,与正常对照组相比细胞内钙分别增加 18 18% (P >0 0 5 )与 11% (P <0 0 5 )。在模拟缺血液中加入1mol/LGB灌流 12min时细胞内钙仅增加 9 60 % (n =12 ,P <0 0 0 1) ,与缺血对照组相比有显著性差异 (P <0 0 5 )。结果表明 ,GB可逆转模拟缺血造成L 型钙电流的降低 ,同时可部分减轻由于缺血所造成的细胞内钙的超载  相似文献   

9.
Summary Few studies have focused on the effect of a broad range of phytohormones on growth and secondary metabolism of a single hairy root species. We measured growth, development, and production of the antimalarial drug, artemisinin, in Artemisia annua hairy roots in response to the five main hormones: auxins, cytokinins, ethylene, gibberellins (GA), and abscisic acid (ABA). Single roots grown in six-well plates in medium B5 with 0.01 mgl−1 (0.029 μM) GA3 produced the highest values overall in terms of the number of lateral roots, length of the primary root, lateral root tip density, total lateral root length, and total root length. When the total root lengths are compared, the best conditions for stimulating elongation appear to be: GA 0.01 mgl−1 (0.029μM)> ABA 1.0 mgl−1 (3.78μM)=GA 0.02 mgl−1 (0.058μM). Bulk yields of biomass were inversely proportional to the concentration of each hormone tested. All cultures provided with ABA yielded the highest amount of biomass. Both 6-benzylaminopurine and 2-isopentenyladenine inhibited root growth, however, only 2-isopentenyladenine stimulated artemisinin production, more than twice that of the B5 controls, and more than any other hormone studied. These results will prove useful in increasing hairy root growth and artemisinin production.  相似文献   

10.
Effects of exogenous glycinebetaine (GB, 2–50 mM) on growth, photosynthetic gas exchange, PSII photochemistry, and the activities of key enzymes involved in CO2 fixation in maize plants were investigated. Growth, CO2 assimilation rate, and stomatal conductance increased at low GB concentrations (2–20 mM) but decreased significantly at high GB concentrations (30–50 mM). Leaf relative water content and water potential remained unchanged at low GB concentrations but decreased at high GB concentrations. The maximal efficiency of PSII photochemistry was unchanged either at low or high GB concentrations. The actual PSII efficiency ( Φ PSII) and photochemical quenching (qP) increased at low GB concentrations but decreased at high GB concentrations. At low GB concentrations, there were no significant changes in the efficiency of excitation energy capture by open PSII reaction centres (Fv′/Fm′) and non‐photochemical quenching (qN). At high GB concentrations, Fv′/Fm′ decreased while qN increased significantly. There were no changes in the activities of phosphoenolpyruvate carboxylase, pyruvate phosphate dikinase, and ribulose‐1,5‐bisphosphate carboxylase in control and GB‐fed plants. However, there was a linear correlation between CO2 assimilation rate and stomatal conductance in control and GB‐fed plants. Moreover, there were no significant differences in O2 evolution rate between control and GB fed‐plants under saturated CO2 conditions. The results suggest that exogenous GB application at certain concentrations can enhance CO2 assimilation rate, which can be explained by an increased stomatal conductance.  相似文献   

11.
Jasmonates enhance the expression of various genes involved in terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus. We applied precursor feeding to our C. roseus suspensions to determine how methyl jasmonate (MJ) alters the precursor availability for TIA biosynthesis. C. roseus suspensions were induced with MJ (100 μM) on day 6 and fed loganin (0.30 mM), tryptamine (0.15 mM), loganin plus tryptamine, or geraniol (0.1–1.0 mM) on day 7. While MJ increased ajmalicine production by 3-fold, induced cultures were still limited by terpenoid precursors. However, both induced and non-induced cultures became tryptamine-limited with excess loganin. Geraniol feeding also increased ajmalicine production in non-induced cultures. But MJ appeared to increase geraniol availability in induced cultures, due presumably to the increased expression of Dxs with MJ addition.  相似文献   

12.
This study aimed to improve rosmarinic acid (RA) production in the whole plant culture of Solenostemon scutellarioides through elicitation. Amongst selected elicitors methyl jasmonate (MJ), salicylic acid (SA), and yeast extract (YE) caused significant elevation in RA accumulation. Elicitation with MJ (50 μM) and SA (50 μM) caused almost 1.7 and 1.4-fold increase in RA accumulation, respectively, within day 1. While YE (100 μg ml?1) elicitation showed highest RA content (~1.5-fold) in day 3. Preceding the elicitor-induced RA accumulation, there was a notable alteration in the specific activities of RA biosynthetic enzymes viz. phenylalanine ammonia lyase, tyrosine aminotransferase, hydroxyl-phenylpyruvate reductase and rosmarinic acid synthase up on MJ (50 μM), SA (50 μM) and YE (100 mg ml?1) elicitation. Based on differential responses of aforementioned enzymes, RA synthesis was further scaled up through combination of elicitors in pre-optimized doses. In synergy study, at a time exposure with MJ + SA + YE and MJ + SA followed by YE after 24 h has been found to produce significant elevation of RA (2.0 and 1.9-fold, respectively) within 24 h while later maintained a steady state increased level (~1.7 ± 0.2-fold) over control up to day 7.  相似文献   

13.
Wang CY  Wu YM  Xiao L  Xue HM  Wang R  Wang FW  He RR 《生理学报》2008,60(1):17-22
本研究在30只麻醉雄性Sprague-Dawley大鼠隔离灌流颈动脉窦区观察了银杏苦内酯B(ginkgolide B)对颈动脉窦压力感受性反射的影响.结果显示:(1)银杏苦内酯B(0.1,1,10 pmol/L)隔离灌流序侧颈动脉窦区,使压力感受性机能曲线向右上方移位,曲线最大斜率(peak slop,PS)减小,血压反射性下降(reflex decrease,RD)幅度减小(P<0.01),阂压(threshold pressure,TP)、平衡压(equilibrium pressure,EP)和饱和压(saturation pressure,SP)均升高(P<0.05,P<0.01).其中PS、RD、TP、EP和sP呈明显的剂量依赖性;(2)预先应用钙通道开放剂Bay K8644(500 nmol/L),可以完伞取消银杏苦内酯B的抑制作用.(3)预先应用钾通道阻断剂四乙铵(tetraethylammonium,TEA,1 mmol/L),银杏苦内酯B的上述作用也被完全取消.结果表明,银杏苦内酯B对大鼠颈动脉实压力感受性反射有抑制作用,此作用与银杏苦内酯B减少颈动脉窦压力感受器神经末梢钙离子内流和增加钾离子外流有关.  相似文献   

14.
Hydrogen peroxide (H2O2) and nitric oxide (NO) generated by salicylic acid (SA) are considered to be functional links of cross‐tolerance to various stressors. SA‐stimulated pre‐adaptation state was beneficial in the acclimation to subsequent salt stress in tomato (Solanum lycopersicum cv. Rio Fuego). At the whole‐plant level, SA‐induced massive H2O2 accumulation only at high concentrations (10?3–10?2M), which later caused the death of plants. The excess accumulation of H2O2 as compared with plants exposed to 100 mM NaCl was not associated with salt stress response after SA pre‐treatments. In the root tips, 10?3–10?2M SA triggered the production of reactive oxygen species (ROS) and NO with a concomitant decline in the cell viability. Sublethal concentrations of SA, however, decreased the effect of salt stress on ROS and NO production in the root apex. The attenuation of oxidative stress because of high salinity occurred not only in pre‐adapted plants but also at cell level. When protoplasts prepared from control leaves were exposed to SA in the presence of 100 mM NaCl, the production of NO and ROS was much lower and the viability of the cells was higher than in salt‐treated samples. This suggests that, the cross‐talk of signalling pathways induced by SA and high salinity may occur at the level of ROS and NO production. Abscisic acid (ABA), polyamines and 1‐aminocyclopropane‐1‐carboxylic acid, the compounds accumulating in pre‐treated plants, enhanced the diphenylene iodonium‐sensitive ROS and NO levels, but, in contrast to others, ABA and putrescine preserved the viability of protoplasts.  相似文献   

15.
Abstract: [3H]Ryanodine binding studies of ryanodine receptors in brain membrane preparations typically require the presence of high salt concentrations in assay incubations to yield optimal levels of binding. Here, radioligand binding measurements on rat cerebral cortical tissues were conducted under high (1.0 M KCI) and low (200 mM KCI) salt buffer conditions to determine the effects of ionic strength on receptor binding properties as well as on modulation of ligand binding by Ca2+, Mg2+, β,γ-methylene-adenosine 5′-triphosphate (AMP-PCP), and caffeine. In 1.0 M KCI buffer, labeled titration/equilibrium analyses yielded two classes of binding sites with apparent KD (nM) and Bmax (fmol/mg of protein) values of 2.4 and 34, respectively, for the high-affinity site and 19.9 and 157, respectively, for the low-affinity site. Unlabeled titration/equilibrium measurements gave a single high-affinity site with a KD value of 1.9 nM and a Bmax value of 95 fmol/mg of protein. The apparent KD value derived from association and dissociation studies was 20 pM. Equilibrium binding was activated by Ca2+ (KD/Ca2+= 14 nM), inhibited by Mg2+ (IC60= 5.0 mM), and unaffected by AMP-PCP or caffeine. In 200 mM KCI buffer conditions, labeled titration analyses gave only a single site with a KD value similar to and a Bmax value 1.8-fold greater than those obtained for the low-affinity site in 1.0 M KCI buffer. In unlabeled titration measurements, the KD value was fivefold lower, whereas the Bmax value was unaffected. The KD value derived from association and dissociation analysis was 2.4-fold greater in 200 mM KCI compared with 1.0 M KCI buffer conditions. In 200 mM compared with 1.0 M KCI, the potency with which Mg2+ inhibited binding was increased by 3.8-fold, whereas the affinity of the activation site for Ca2+ was reduced by 13-fold. Addition of caffeine in the presence of low salt increased the affinity of Ca2+ activation by 1.7-fold. The inhibitory effect of Mg2+ on [3H]-ryanodine binding in the presence of 200 mM KCI was reversed by AMP-PCP and caffeine with apparent EC50 values of 0.25 and 7.6 mM, respectively. Taken together, these results indicate that ionic strength is an important consideration in binding studies of brain ryanodine receptors and their interactions with modulatory agents.  相似文献   

16.
The effects of methyl jasmonate (MJ) or salicylic acid (SA) on the sesquiterpene lactone content and biomass accumulation were investigated in a hairy root culture of Cichorium intybus. The guaianolides crepidiaside B (1), 8-deoxylactucin (2), and the germacranolide sonchuside A (3) were quantified by RP-HPLC. Neither MJ nor SA affected the growth of examined hairy root culture. Jasmonate up-regulated biosynthesis of the analysed sesqiterpene lactones in the culture (maximum after 72 h). SA caused a transient increase in sonchuside A accumulation in the roots (up to twofold increase compared with the control) and decrease of guaianolide content.  相似文献   

17.
B. H. Ng 《Plant and Soil》1987,103(1):123-125
The growth, nodulation and nitrogen fixation ofCasuarina equisetifolia were compared at six levels (0–500mM NaCl) of salinity in sand culture. Dry weight of nodules, shoots and roots and N content of shoots increased at intermediate levels of salinity (50–100 mM) but decreased at 500 mM NaCl. Nodulation occurred at all NaCl levels, but at 500mM NaCl level, the nodule dry weight declined by 50% from the control. Increasing NaCl concentration of up to 200mM had little effect on the N2-fixation rate, but at 500mM NaCl level the rate decreased to 40% of the control value.  相似文献   

18.
Summary A production method for alkaline serine protease with Bacillus licheniformis in a synthetic medium was developed. Employing closed-loop control of oxygen, nitrogen and carbon source the pO2 was held at 5%, the ammonium concentration kept below 1 mM and the glycerol concentration was maintained between 20 and 100 mM. Protease production was monitored by flow injection analysis. Thus, in a fed-batch procedure production could be increased 4.6-fold in comparison to an uncontrolled batch process. Offprint requests to: G. Bierbaum  相似文献   

19.
The green macroalga Ulva pertusa Kjellman produced UV‐B absorbing compounds with a prominent absorption maximum at 294 nm in response only to UV‐B, and the amounts induced were proportional to the UV‐B doses. Under a 12:12‐h light:dark regime, the production of UV‐absorbing compounds occurred only during the exposure periods with little turnover in the dark. There was significant reduction in growth in parallel with the production of UV‐B absorbing compounds. The polychromatic action spectrum for the induction of UV‐B absorbing compounds in U. pertusa exhibits a major peak at 292 nm with a smaller peak at 311.5 nm. No significant induction was detected above 354.5 nm, and radiation below 285 nm caused significant reduction in the levels of UV‐B absorbing compounds. After UV‐B irradiation at 1.0 W·m?2 for 9 h, the optimal photosynthetic quantum yield of the samples with UV‐B absorbing compounds slightly increased relative to the initial value, whereas that of thalli lacking the compounds declined to 30%–34% of the initial followed by subsequent recovery in dim light of up to 84%–85% of the initial value. There was a positive and significant relationship between the amount of UV‐B absorbing compounds with antioxidant activity as determined by the α,α‐diphenyl‐β‐picrylhydrazyl scavenging assay. In addition to mat‐forming characteristics and light‐driven photorepair, the existence and antioxidant capacity of UV‐B absorbing compounds may confer U. pertusa a greater selective advantage over other macroalgae, thereby enabling them to thrive in the presence of intense UV‐B radiation.  相似文献   

20.
A L-methionine-D,L-sulfoximine-resistant mutant of the cyanobacterium Anabaena variabilis, strain SA1, excreted the ammonium ion generated from N2 reduction. In order to determine the biochemical basis for the NH4 +-excretion phenotype, glutamine synthetase (GS) was purified from both the parent strain SA0 and from the mutant. GS from strain SA0 (SA0-GS) had a pH optimum of 7.5, while the pH optimum for GS from strain SA1 (SA1-GS) was 6.8. SA1-GS required Mn+2 for optimum activity, while SA0-GS was Mg+2 dependent. SA0-GS had the following apparent K m values at pH 7.5: glutamate, 1.7 mM; NH4 +, 0.015 mM; ATP, 0.13 mM. The apparent K m for substrates was significantly higher for SA1-GS at its optimum pH (glutamate, 9.2 mM; NH4 +, 12.4 mM; ATP, 0.17 mM). The amino acids alanine, aspartate, cystine, glycine, and serine inhibited SA1-GS less severely than the SA0-GS. The nucleotide sequences of glnA (encoding glutamine synthetase) from strains SA0 and SA1 were identical except for a single nucleotide substitution that resulted in a Y183C mutation in SA1-GS. The kinetic properties of SA1-GS isolated from E. coli or Klebsiella oxytoca glnA mutants carrying the A. variabilis SA1 glnA gene were also similar to SA1-GS isolated from A. variabilis strain SA1. These results show that the NH4 +-excretion phenotype of A. variabilis strain SA1 is a direct consequence of structural changes in SA1-GS induced by the Y183C mutation, which elevated the K m values for NH4 + and glutamate, and thus limited the assimilation of NH4 + generated by N2 reduction. These properties and the altered divalent cation-mediated stability of A. variabilis SA1-GS demonstrate the importance of Y183 for NH4 + binding and metal ion coordination. Received: 3 July 2002 / Accepted: 29 July 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号