首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Previous reports have suggested that histamine modulates neutrophil chemotaxis, but this has not been observed by all laboratories. We have re-addressed this controversial point and demonstrate that histamine and H1- and H2-receptor-specific agonists cause limited inhibition of chemotaxis while stimulating chemokinesis. Furthermore, using the chemoattractant N-formyl-methionyl-leucyl-phenylalanine (f-met-leu-phe) as a stimulus, we demonstrate that histamine and H1/H2 agonists inhibit f-met-leu-phe-stimulated changes in membrane potential (monitored with the cyanine dye dipentyloxacarbocyanine), superoxide anion production (cytochrome c reduction), hydrogen peroxide formation (scopoletin fluorescence), and degranulation of granule contents (lysozyme and beta-glucuronidase) in a dose-dependent manner but have no effect on neutrophil functions stimulated by the secretagogues phorbol myristate acetate or A23187. All inhibitory effects of histamine and the H1/H2 agonists are reversed in a competitive manner by the H2 antagonist cimetidine. In addition, structure-activity studies using H1 and H2 receptor agonists and antagonists indicate that a single site with specificity for both H1 and H2 analogue structures modulates the various f-met-leu-phe-stimulated functions studied. Kinetic studies demonstrate that the inhibitory effects of histamine on neutrophil function are only observed when histamine is added before f-met-leu-phe and that inhibition occurs within 10 to 20 sec of histamine addition, does not persist after its removal, and is reversed by addition of cimetidine 10 to 20 sec before stimulation with f-met-leu-phe. Although the inhibitory effects of histamine are exerted early in the sequence of PMN activation by f-met-leu-phe, histamine does not affect the binding or internalization of f-met-leu-[3H]phe. The ability of histamine to modify the variety of neutrophil responses demonstrated in this report suggests an important and direct role for histamine in the regulation of inflammatory reactions in acute allergic settings or other disease states in which histamine release may occur.  相似文献   

2.
E Poli  G Coruzzi  G Bertaccini 《Life sciences》1991,48(13):PL63-PL68
The effect of selective histamine H3-receptor agonists and antagonists on the acetylcholine release from peripheral nerves was evaluated in the guinea pig longitudinal muscle-myenteric plexus preparations, preloaded with (3H)choline. In the presence of H1 and H2 blockade, histamine (10(-7)-10(-4) M) and (R)-alpha-methylhistamine (10(-8)-10(-6) M) inhibited the electrically-evoked acetylcholine release, being (R)-alpha-methylhistamine more active than histamine, but behaving as a partial agonist. The effect of histamine was completely reversed by selective H3-blocking drugs, thioperamide and impromidine, while only submaximal doses of (R)-alpha-methylhistamine were antagonized. Furthermore, thioperamide and impromidine enhanced the electrically-evoked acetylcholine release. On the contrary, the new H3-blocker, HST-7, was found substantially ineffective, both as histamine antagonist and as acetylcholine overflow enhancer. These data suggest that histamine exerts an inhibitory control on the acetylcholine release from intestinal cholinergic nerves through the activation of H3 receptors.  相似文献   

3.
This study examined the effects of dopamine D1 and D2 receptor agonists and antagonists on the spontaneous and calcium-dependent, K+-induced release of gamma-[3H]aminobutyric acid [( 3H]GABA) accumulated by slices of rat substantia nigra. SKF 38393 (D1 agonist) and dopamine (dual D1/D2 agonist) were without effect on [3H]GABA efflux by themselves (1-40 microM), or in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) (0.5 mM), but potentiated evoked release in the presence of forskolin (0.5 microM), an adenylate cyclase activator. These increases in release were prevented by the D1 antagonist SCH 23390 (0.5 microM), but not by the D2 antagonist metoclopramide (0.5 microM). Higher concentrations of forskolin (10-40 microM) augmented stimulus-evoked [3H]GABA release directly, whereas dibutyryl cyclic AMP (100-200 microM) depressed it. Apomorphine, noradrenaline, and 5-hydroxytryptamine (1-40 microM) had no effect. The D2 stimulants lisuride, RU 24213, LY 171555, and bromocriptine dose-dependently inhibited depolarisation-induced but not basal [3H]GABA outflow. These inhibitory responses were not modified by the additional presence of SKF 38393 (10 microM) or SCH 23390 (1 microM), or by injection of 6-hydroxydopamine into the medial forebrain bundle 42 days earlier, but were attenuated by metoclopramide (0.5 microM). Higher amounts (10 microM) of SCH 23390, metoclopramide, or other D2 antagonists (loxapine, haloperidol) reduced evoked GABA release by themselves, probably by nonspecific mechanisms. These results suggest D1 and D2 receptors may have opposing effects on nigral GABA output and could explain the variable effects of mixed D1/D2 dopaminomimetics in earlier release and electrophysiological experiments.  相似文献   

4.
H2 antihistamines, including cimetidine, burimamide, metiamide, and tiotidine, consistently augmented antigen-induced histamine release from human basophils in vitro when control histamine release was less than 20% of total. This effect was specific to the H2-receptor blocking activity of these drugs: equivalent degrees of receptor blockade by four different H2 antihistamines resulted in equipotent enhancement; H1-receptor antagonists did not alter histamine release; and aminoguanidine and amodiaquine, agents that inhibit histamine metabolism but do not block H2 receptors, did not enhance histamine release. Cimetidine did not enhance release when present a) when basophils were "activated" but did not release histamine ("first stage"), or b) when basophils were no longer susceptible to histamine inhibition ("second stage"). Thus, H2 antagonists enhanced histamine release by blocking the capacity of released histamine to act on H2 receptors to inhibit release. Because it is likely that only small percentages of histamine are released in vivo, it is possible that H2 antihistamines amplify the inflammatory process by blocking the inhibitory effects of the released histamine.  相似文献   

5.
In the present study, we investigated the effect of histamine on sympathetic neurotransmission from isolated, superfused bovine irides. We also studied the pharmacology of prejunctional histamine receptors that regulate the release of norepinephrine (NE) from this tissue. The effect of exogenous histamine and various histamine receptor agonists was examined on the release of [3H]-norepinephrine ([3H]NE) triggered by electrical field stimulation using the Superfusion Method. Histamine receptor agonists caused a concentration-dependent inhibition of field-stimulated [3H]NE overflow with the following rank order of potency: imetit > histamine > R-α-methylhistamine. In all cases, the inhibitory action of histamine receptor agonists was attenuated at high concentrations of these compounds. The histamine receptor antagonists, clobenpropit (H3-antagonist/H4-agonist) and thioperamide (H3-antagonist) blocked the inhibitory response elicited by R-α-methylhistamine and imetit, respectively. Inhibitory effects of R-α-methylhistamine and clonidine were not additive suggesting that prejunctional H3- and α2-adrenoceptors coexist at neurotransmitter release sites. We conclude that histamine produces an inhibitory action on sympathetic neurotransmission in the bovine iris, an effect mimicked by selective H3-receptor agonists and blocked by H3-antagonists.  相似文献   

6.
Since serine protease in involved in histamine release from mast cells, we attempted to prepare new protease inhibitors, trans-4-(guanidinomethyl)cyclohexanecarboxylic acid (GmcHX-CO2H) esters, and examined their inhibitory effects on typical serine proteases and on histamine release induced by compound 48/80. We compared their effects with those of trans-4-(aminomethyl)cyclohexanecarboxylic acid (AmcHx-CO2H) esters. AmcHxCO2H and GmcHxCO2H esters inhibited the esterolytic activity of trypsin, but GmcHx-CO2H esters had little or no inhibitory effect on caseinolytic activity whereas AmcHxCO2H esters strongly inhibited the latter. AmcHCO2H esters strongly inhibited plasmin but had no effect on chymotrypsin. GmcHxCO2H esters strongly inhibited the esterolytic activity of chymotrypsin, but had no effect on chymotrypsin-induced caseinolysis. Both GmcHxCO2H an AmcHxCO2H esters inhibited urokinase. Of the esters of AmcHxCO2H and GmcHxCO2H tested, only GmcHxCO2H p-tert-butylphenyl ester (GmcHxCOOPhBut) at low concentration (27 microM) strongly inhibited histamine release from rat mast cells induced by compound 48/80. GmcHxCOOPhBut was effective in preventing active systemic anaphylaxis and passively sensitized guinea pigs. Its effectiveness in preventing anaphylactic phenomena might be due to its strong inhibitory effects on histamine release from mast cells.  相似文献   

7.
The stimulatory effect of histamine on rabbit and rat testicular capsule was blocked by the H1 blocker, diphenhydramine, but not by the H2 blocker, cimetidine, suggesting the presence of H1 histamine receptors in both rabbit and rat testicular capsules. In the rabbit, both anti-prostaglandin F (PGF) and anti-prostaglandin E (PGE) effaced spontaneous autorhythmic contractions. They markedly inhibited PGF 2 alpha, PGE1 and histamine-stimulated contractions of the rabbit testicular capsule. In the rat, anti-PGF or anti-PGE had no inhibitory effects on the capsular tone, but they both inhibited the stimulatory effects of histamine. These data suggest that the action of histamine on the rabbit and rat testicular capsules could be due partly to a secondary release of the PG's, PGE2 and PGF2 alpha.  相似文献   

8.
Nerve growth factor (NGF) has been shown to stimulate the hypothalamic-pituitary-adrenocortical (HPA) axis. Since NGF induces the release of histamine from mast cells and in consideration of the fact that histamine is an HPA axis activator, we investigated whether NGF adrenocortical stimulation is mediated by histamine. To accomplish with it, the H1 histamine antagonist promethazine and the H2 antagonists metiamide and zolantidine were used in freely-moving cannulated rats. The increase in plasma corticosterone concentration induced by histamine administration was prevented completely by promethazine pretreatment but was unaffected by the H2 antagonists. Neither H1 nor H2 antagonists affected the adrenocortical stimulation induced by NGF administration. Moreover, since mast cells are reportedly present in the rat adrenal gland and the locally released histamine mediates the release of adrenaline which, in turn, stimulates glucocorticoid synthesis and secretion, we studied the effect of NGF on basal and ACTH-stimulated corticosterone release from in vitro isolated quartered adrenal glands and collagenase-dispersed adrenal cells. The results from these in vitro experiments have indicated that NGF modified neither spontaneous nor stimulated corticosterone release. Altogether these observations suggest that endogenous histamine is unlikely to be involved in HPA axis stimulation by NGF and reinforce the previously proposed concept of an active participation of NGF in the control of adrenocortical activity.  相似文献   

9.
In rat adipocyte membranes, both beta-adrenergic agonists and beta-adrenergic antagonists competed with (--)[3H]dihydroalprenolol for high affinity (KD 2-4 nM) and low capacity binding sites. The antagonists but not the agonists competed with (--)[3H]dihydroalprenolol for lower affinity and higher capacity sites. The present studies were performed in order to characterize the adipocyte beta-adrenergic receptor and distinguish it from low affinity, higher capacity sites which were heat-labile and not stereoselective. When isoproterenol was used to define the nonspecific binding, saturation studies showed a single binding site with a capacity of approximately 100 fmol/mg membrane protein (corresponding to approximately 50,000 sites/adipocyte). Binding was saturated by 10 nM (--)[3H]dihydroalprenolol. Approximate KD's of 204 nM were observed. Kinetic analysis of (--)[3H]dihydroalprenolol binding provided an independent measurement of KD between 0.75 and 1.1 nM. This binding site had the characteristics of a beta 1-adrenergic receptor with the potency of isoproterenol greater than norepinephrine greater than or equal to epinephrine as competitors of binding. Furthermore, the KD of inhibition of (--)[3H]dihydroalprenolol binding correlated with the Ki of inhibition by antagonists or Ka of activation by agonists of glycerol release in isolated adipocytes (r = 0.968, P less than 0.001). These results suggest that beta-adrenergic agonists compete with (--)[3H]dihydroalprenolol for the high affinity binding site which represents the physiological site. Furthermore, the use of antagonists (propranolol, alprenolol) to define specific beta-binding includes nonspecific site(s) as well as the beta-adrenergic site. Previous characterization and quantitation of beta receptors in rat fat cell membranes may have been in error by incorporating both types of binding in their measurement.  相似文献   

10.
The substance P(SP)/bombesin (Bn) antagonists [DArg1DTrp7,9Leu11] SP(P-7482), [DArg1-DPro2DTrp7,9Leu11]SP (P-7483), [DArg1DPhe5DTrp7,9Leu11]SP(P-7492), and the growth hormone releasing hormone (GHRH) antagonist [DArg2Ala8,9,15]GHRH(1-29)(DC21-366) were tested for their in vitro effects on the release of growth hormone (GH) in the presence of GHRH and growth hormone releasing peptide, HisDTrpAlaTrpDPheLysNH2(GHRP). P-7492, P-7483, and P-7482 decreased, dose-dependently, the release of GH by GHRP (IC50 = 0.2 microM, 0.85 microM, and 6 microM, respectively). These antagonists had only a 10-15% inhibitory effect on the stimulated GH release of GHRH even at high dosage. DC21-366 decreased the stimulated release of GH by GHRH (IC50 = 0.16 microM) but not by GHRP. Neither SP nor Bn had GH releasing or inhibitory effects in this system.  相似文献   

11.
We examined the role of prostaglandin E (EP) receptor subtypes in the regulation of gastric acid secretion in the rat. Under urethane anesthesia, the stomach was superfused with saline, and the acid secretion was determined at pH 7.0 by adding 50 mM NaOH. The acid secretion was stimulated by intravenous infusion of histamine or pentagastrin. Various EP agonists were administered intravenously, whereas EP antagonists were given subcutaneously 30 min or intravenously 10 min before EP agonists. PGE(2) suppressed the acid secretion stimulated by either histamine or pentagastrin in a dose-dependent manner. The acid inhibitory effect of PGE(2) was mimicked by sulprostone (EP(1)/EP(3) agonist) but not butaprost (EP(2) agonist) or AE1-329 (EP(4) agonist). The inhibitory effect of sulprostone, which was not affected by ONO-8711 (EP(1) antagonist), was more potent against pentagastrin- (50% inhibition dose: 3.6 mug/kg) than histamine-stimulated acid secretion (50% inhibition dose: 18.0 mug/kg). Pentagastrin increased the luminal release of histamine, and this response was also inhibited by sulprostone. On the other hand, AE1-329 (EP(4) agonist) stimulated the acid secretion in vagotomized animals with a significant increase in luminal histamine. This effect of AE1-329 was totally abolished by cimetidine as well as AE3-208 (EP(4) antagonist). These results suggest that PGE(2) has a dual effect on acid secretion: inhibition mediated by EP(3) receptors and stimulation through EP(4) receptors. The former effect may be brought about by suppression at both parietal and enterochromaffin-like cells, whereas the latter effect may be mediated by histamine released from enterochromaffin-like cells.  相似文献   

12.
A number of histamine receptor agonists and antagonists were utilized to study the effects of histamine on hepatocellular reduced glutathione (GSH) concentrations and the potential role of histamine as a mediator of morphine-induced hepatic GSH depression. Administration of histamine, the H1-histamine receptor agonist thiazolylethylamine, the H2-histamine receptor agonist impromidine, or the histamine-releasing substance compound 48/80 resulted in no significant change in hepatic GSH concentrations. The H1-histamine receptor antagonist chlorpheniramine and the H2-histamine receptor antagonist ranitidine were also without significant effect on hepatic GSH and did not antagonize morphine-induced GSH depression. These observations indicate that histamine release following morphine administration does not play a significant role in the subsequent depletion of hepatic GSH.  相似文献   

13.
The objective of this study was to determine which adenosine receptor subtypes were involved in the modulation of norepinephrine release from cardiac nerve terminals. In addition, the persistence of adenosine-mediated effects was evaluated. Rat hearts attached to the stellate ganglion were isolated and perfused. The ganglion was electrically stimulated twice (S1 and S2), allowing 10 min between the stimulations. To determine adenosine receptor subtypes, selective and nonselective adenosine agonists and antagonists were infused following S1 and until the end of S2. To evaluate the persistence of adenosine-mediated effect on norepinephrine release, the stellate ganglion was stimulated a third (S3) and fourth (S4) time. Coronary effluents were collected to determine norepinephrine content. Adenosine and a selective A1 receptor agonist, CCPA, inhibited norepinephrine release by 49% and 54%, respectively. This effect was reversed by simultaneous infusion of nonspecific (8-SPT) and specific (DPCPX) A1 receptor antagonists. Selective A2A (CGS 21680) and A3 (AB-MECA) receptor agonists had no discernible effect on norepinephrine release. Similarly, adenosine A2A receptor antagonists CSC and DMPX did not alter the dose-response relation between norepinephrine release and adenosine. Finally, the inhibitory effects of adenosine on norepinephrine release did not persist 10 min subsequent to the removal of adenosine. Adenosine inhibited norepinephrine release primarily via the adenosine A1 receptor. This effect of adenosine was of short duration. Adenosine A2A and A3 receptors were either absent or functionally insignificant in the regulation of norepinephrine release in the rat heart.  相似文献   

14.
We have previously demonstrated that adenosine controls the release of catecholamines (CA) from carotid body (CB) acting on A2B receptors. Here, we have tested the hypothesis that the control is exerted via an interaction between adenosine A2B and dopamine D2 receptors present in chemoreceptor cells. Experiments were performed in vitro in CB from 3 months rats. The effect of A2B adenosine and D2 dopamine agonists and antagonists applied alone or in combination were studied on basal (20%O2) and hypoxia (10%O2)-evoked release of CA and cAMP content of CB. We have found that adenosine A2 agonists and D2 antagonists dose-dependently increased basal and evoked release CA from the CB while A2 antagonists and D2 agonists had an inhibitory action. The existence of A2B-D2 receptor interaction was established because the inhibitory action of A2 antagonists was abolished by D2 antagonists, and the stimulatory action of A2 agonists was abolished by D2 agonists. Further, A2 agonists increased and D2 agonist decreased cAMP content in the CB; their co-application eliminated the response. The present results provide direct pharmacological evidence that an antagonistic interaction between A2B adenosine and D2 dopamine receptors exist in rat CB and would explain the dopamine-adenosine interactions on ventilation previously observed.  相似文献   

15.
H3-Receptors Control Histamine Release in Human Brain   总被引:4,自引:1,他引:3  
The regulation of histamine release was studied on slices prepared from pieces of human cerebral cortex removed during neurosurgery and labeled with L-[3H]histidine. Depolarization by increased extracellular K+ concentration induced [3H]histamine release, although to a lesser extent than from rat brain slices. Exogenous histamine reduced by up to 60% the K+-evoked release, with an EC50 of 3.5 +/- 0.5 X 10(-8) M. The H3-receptor antagonists impromidine and thioperamide reversed the histamine effect in an apparently competitive manner and enhanced the K+-evoked release, indicating a participation of endogenous histamine in the release control process. The potencies of histamine and the H3-receptor antagonists were similar to those of these agents at presynaptic H3-autoreceptors controlling [3H]histamine release from rat brain slices. It is concluded that H3-receptors control histamine release in the human brain.  相似文献   

16.
The effects of adenosine (A) and the nonmetabolizable adenosine analogs, N-ethylcarboxamidoadenosine (NECA), L-phenylisopropyladenosine (L-PIA), D-PIA and 2-chloroadenosine (2CHA) were examined on the IgE-dependent mediator release from RBL-2H3 cells, a model for mast-cell function. Adenosine and the adenosine analogs failed to influence mediator release from cells, previously sensitized with monoclonal anti-TNP mouse immunoglobulin E (anti-TNP IgE), when added alone. When added prior to conjugated trinitrophenol-ovalbumin (TNP-OVA), adenosine and the adenosine analogs (10(-8)-10(-4) M) significantly potentiated the release of both histamine (marker for degranulation) and peptidoleukotrienes (LT) (marker for de novo synthesized mediators). The effects were concentration-dependent with the potency order being L-PIA greater than NECA greater than A greater than D-PIA, 2CHA. The stimulatory effect on both histamine and LT release were reversed by prior treatment of the cells with pertussis toxin but not by the purinoceptor antagonists, theophylline and 8-phenyltheophylline, nor adenosine uptake blockers. At higher concentrations (above 10(-5) M), adenosine and adenosine analogs were also inhibitory on LT but not on histamine release. This inhibition was more evident on pertussis-toxin-treated cells in which there was no effect of adenosine or adenosine analogs on histamine release, but a concentration-dependent inhibition of IgE-dependent LT release. These findings demonstrate that adenosine analogs have two distinct mechanisms on mediator release from RBL-2H3 cells; a stimulatory effect on both histamine and LT release, mediated via a pertussis-toxin-sensitive G protein and an inhibitory effect on LT release via a pertussis-toxin-insensitive pathway. An abstract of this work has been published.  相似文献   

17.
Using histamine and the H3 receptor antagonist thioperamide, the roles of histamine receptors in NMDA-induced necrosis were investigated in rat cultured cortical neurons. Within 3 h of intense NMDA insult, most neurons died by necrosis. Histamine reversed the neurotoxicity in a concentration-dependent manner and showed peak protection at a concentration of 10(-7) m. This protection was antagonized by the H2 receptor antagonists cimetidine and zolantidine but not by the H1 receptor antagonists pyrilamine and diphenhydramine. In addition, the selective H2 receptor agonist amthamine mimicked the protection by histamine. This action was prevented by cimetidine but not by pyrilamine. 8-Bromo-cAMP also mimicked the effect of histamine. In contrast, both the adenylyl cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purine-6-amine and the cAMP-dependent protein kinase inhibitor N-[2-(p-bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide reversed the protection by histamine. Thioperamide also attenuated NMDA-induced excitotoxicity, which was reversed by the H3 receptor agonist (R)-alpha-methylhistamine but not by pyrilamine and cimetidine. In addition, the protection by thioperamide was inhibited by the GABA(A) receptor antagonists picrotoxin and bicuculline. Further study demonstrated that the protection by thioperamide was due to increased GABA release in NMDA-stimulated samples. These results indicate that not only the H2 receptor/cAMP/cAMP-dependent protein kinase pathway but also the H3 receptor/GABA release pathway can attenuate NMDA-induced neurotoxicity.  相似文献   

18.
When rat adipocyte membranes had been labeled with [3H]GTP in the presence of a beta-adrenergic agonist, the subsequent [3H]GDP release was stimulated by beta-agonists or agonists (e.g. glucagon and secretin) of other "activatory" receptors involved in activation of adenylate cyclase, but was not stimulated by agonists (e.g. prostaglandin E1 and adenosine) of "inhibitory" receptors involved in cyclase inhibition. On the contrary, agonists of inhibitory receptors were effective in stimulating GDP release from hamster adipocyte membranes that had been labeled via inhibitory alpha 2-adrenergic receptors, but an activatory receptor agonist such as isoproterenol was not. Thus, the guanine nucleotide regulatory protein (Ni) involved in adenylate cyclase inhibition is an entity distinct from the regulatory protein (Ns) involved in cyclase activation, and multiple activatory or inhibitory receptors are coupled to a respective common pool of Ns or Ni. Preactivated cholera toxin added together with NAD enhanced GDP release from rat adipocyte membranes prelabeled with isoproterenol but was without effect on the release from hamster adipocyte membranes that had been labeled with an alpha-agonist. In sharp contrast, the active subunit of islet-activating protein, pertussis toxin, failed to alter GDP release from the former membrane but completely abolished inhibitory agonist-induced stimulation of GDP release from the latter membrane preparation in the presence of NAD. Thus, the site of action of cholera toxin is Ns, while that of islet-activating protein is Ni. The function of Ni to communicate between inhibitory receptors and adenylate cyclase was lost when it was ADP-ribosylated by islet-activating protein.  相似文献   

19.
Histamine (10-7 to 10-4 M) concentration-dependently stimulated the production of IL-18 and IFN-gamma and inhibited the production of IL-2 and IL-10 in human PBMCs. Histamine in the same concentration range did not induce the production of IL-12 at all. The stimulatory or inhibitory effects of histamine on cytokine production were all antagonized by H2 receptor antagonists ranitidine and famotidine in a concentration-dependent manner, but not by H1 and H3 receptor antagonists. Selective H2 receptor agonists, 4-methylhistamine and dimaprit, mimicked the effects of histamine on five kinds of cytokine production. The EC50 values of histamine, 4-methylhistamine, and dimaprit for the production of IL-18 were 1.5, 1.0, and 3.8 microM, respectively. These findings indicated that histamine caused cytokine responses through the stimulation of H2 receptors. All effects of histamine on cytokine responses were also abolished by the presence of either anti-IL-18 Ab or IL-1beta-converting enzyme/caspase-1 inhibitor, indicating that the histamine action is dependent on mature IL-18 secretion and that IL-18 production is located upstream of the cytokine cascade activated by histamine. The addition of recombinant human IL-18 to the culture concentration-dependently stimulated IL-12 and IFN-gamma production and inhibited the IL-2 and IL-10 production. IFN-gamma production induced by IL-18 was inhibited by anti-IL-12 Ab, showing the marked contrast of the effect of histamine. Thus histamine is a very important modulator of Th1 cytokine production in PBMCs and is quite unique in triggering IL-18-initiating cytokine cascade without inducing IL-12 production.  相似文献   

20.
The effect of omega (benzodiazepine)-receptor agonists, antagonists, and inverse agonists on the electrically evoked release of 5-[3H]hydroxytryptamine ([3H]5-HT) was studied in superfused slices of the rat frontal cerebral cortex. The electrically evoked release of [3H]5-HT was enhanced by nanomolar concentrations of diazepam and the selective omega 1-receptor agonists alpidem and CL 218872. The omega 1/omega 2- and omega 1-receptor antagonists flumazenil and CGS 8216, respectively, did not modify the electrically evoked release of [3H]5-HT. The omega 3-receptor agonist Ro 5-4864 and the omega 1-receptor inverse agonist ethyl-beta-carboline-3-carboxylate on their own did not affect the electrically evoked release of [3H]5-HT. On the other hand, the inverse agonist 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylic acid methyl ester (DMCM), at micromolar concentrations, inhibited both the spontaneous and the evoked release of [3H]5-HT. The facilitation of the electrically evoked release of [3H]5-HT by diazepam, alpidem, or CL 218872 was potentiated by gamma-aminobutyric acid (GABA). Exposure to flumazenil and CGS 8216 antagonized the facilitation by diazepam, alpidem, or CL 218872 of [3H]5-HT release. The inhibition of the release of [3H]5-HT by DMCM was not modified by exposure to either flumazenil, CGS 8216, or GABA. The inhibitory effect of DMCM was not observed when monoamine oxidase activity was inhibited by pargyline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号