首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary A simple constant-time 3D heteronuclear NMR pulse sequence has been developed to quantitatively determine the heteronuclear three-bond couplings 3J(HN,C) and 3J(H,C) in uniformly 13C-enriched proteins. The protocols for measuring accurate coupling constants are based on 1H,13C-heteronuclear relayed E.COSY [Schmidt, J.M., Ernst, R.R., Aimoto, S. and Kainosho, M. (1995) J. Biomol. NMR, 6, 95–105] in combination with numerical least-squares spectrum evaluation. Accurate coupling constants are extracted from 2D spectrum projections using 2D multiplet simulation. Confidence intervals for the obtained three-bond coupling constants are calculated from F-statistics. The three-bond couplings are relevant to the determination of and X 1 dihedral-angle conformations in the amino acid backbone and side chain. The methods are demonstrated on the recombinant 13C, 15N-doubly enriched 147-amino acid protein Desulfovibrio vulgaris flavodoxin with bound flavin mononucleotide in its oxidized form. In total, 109 3J(HN,C) and 100 3J(H,C) coupling constants are obtained from a single spectrum.Abbreviations ANOVA analysis of variances - COSY correlated spectroscopy - E.COSY exclusive correlation spectroscopy - FMN flavin mononucleotide - HMQC heteronuclear multiple-quantum coherence - HSQC heteronuclear single-quantum coherence  相似文献   

2.
Assignment of the 1H and 31P NMR spectra of a tandem G.A mismatched base pair decamer oligodeoxyribonucleotide duplex, d(CCAAGATTGG)2, has been made by two-dimensional 1H-1H and heteronuclear 31P-1H correlated spectroscopy. Unusual downfield 31P resonances have been assigned by a pure absorption phase constant-time heteronuclear 31P-1H correlated spectrum to be associated with the phosphates on the 5'- and 3'-sides of the mismatched guanosine residue. JH3'-P coupling constants for each of the phosphates of the decamer were obtained from the 1H-31P J-resolved selective proton-flip 2D spectrum. The two most downfield-shifted 31P resonances each appear to consist of two overlapping signals that can be resolved into two distinct doublets with different coupling constants in the J-resolved spectrum. This as well as the temperature dependence of the 31P spectra demonstrates that two distinct conformations exist at lower temperatures. By use of a modified Karplus relationship, the C4'-C3'-O3'-P torsional angles (epsilon) were obtained. A linear correlation between 31P chemical shifts and the measured coupling constants is quite good (only when the larger set of coupling constants of the two most downfield 31P signals is included). The 31P chemical shifts as well as the measured coupling constants tend to follow the positional variation seen in other duplexes of interior phosphates resonating more upfield than terminal residues and of interior phosphates exhibiting smaller coupling constants; however, this pattern is disrupted at the site of the mismatch. Modeling and initial NOESY distance restrained molecular mechanics energy minimization and restrained molecular dynamics support previous observations that the mismatched guanine and adenine bases are both in anti conformations. Most significantly, the epsilon backbone torsional angle variaions calculated from the NOESY distance restrained structures are in agreement with both the crystal structure values and the measured JH3'-P coupling constants.  相似文献   

3.
Assignment of the 31P resonances of a series of six sequenced-related tetradecamer DNA duplexes, d(TGTGAGCGCTCACA)2, d(TATGAGCGCTCATA)2, d(TCTGAGCGCTCAGA)2, d(TGTGTGCGCACACA)2, d(TGTGACGCGTCACA)2 and d(CACAGTATACTGTG)2, related to the lac operator DNA sequence was determined either by site-specific 17O labeling of the phosphoryl groups or by two-dimensional 1H-31P pure absorption phase constant time (PAC) heteronuclear correlation spectroscopy. J(H3'-P) coupling constants for each of the phosphates of the tetradecamers were obtained from 1H-31P J-resolved selective proton flip 2D spectra. By use of a modified Karplus relationship the C4'-C3'-O3'-P torsional angles (epsilon) were obtained. Comparison of the 31P chemical shifts and J(H3'-P) coupling constants of these sequences has allowed greater insight into those various factors responsible for 31P chemical shift variations in oligonucleotides and provided an important probe of the sequence-dependent structural variation of the deoxyribose phosphate backbone of DNA in solution. These sequence-specific variations in the conformation of the DNA sugar phosphate backbone of various lac operator DNA sequences can possibly explain the sequence-specific recognition of DNA by DNA binding proteins, as mediated through direct contacts between the phosphates and the protein.  相似文献   

4.
Coxon B 《Carbohydrate research》2007,342(8):1044-1054
The (1)H-(15)N coupling constants of a suite of organic-soluble amino sugar derivatives have been measured by one-dimensional and two-dimensional (1)H/(15)N heteronuclear single quantum, multiple bond correlation (HSQMBC), and the values so obtained are compared with those measured by analysis of (1)H spectra of (15)N-labeled amino sugar derivatives. A number of bicyclic amino sugar models have been studied, including methyl 2- (and 3-)amino-4,6-O-benzylidene-2- (and 3-)deoxy-alpha-D-hexopyranosides in chair or skew conformations, and methyl 2,6-anhydro-3-deoxy-3-phthalimido-alpha-d-mannopyranoside in a locked, almost classical boat conformation. The magnitudes of the vicinal (1)H-(15)N coupling constants (3)J(HCCN) have been correlated with (1)H/(15)N dihedral angles phi computed for the favored conformations by molecular dynamics with molecular mechanics energy minimization. Non-linear regression of the coupling constants on the dihedral angles has yielded a Karplus equation: (3)J(HCCN)=3.1 cos(2) phi-0.6 cos phi+0.4. The coefficients of the terms in this equation have been compared with those reported for 15 other pairs of nuclei, and the coefficient of the important cos(2)phi term found to be numerically smallest for (3)J(HCCN).  相似文献   

5.
The (1)H-(13)C coupling constants of methyl alpha- and beta-pyranosides of D-glucose and D-galactose have been measured by one-dimensional and two-dimensional (1)H-(13)C heteronuclear zero and double quantum, phase sensitive J-HMBC spectra to determine a complete set of coupling constants ((1)J(CH), (2)J(CH), (3)J(CH), (2)J(HH), and (3)J(HH)) within the exocyclic hydroxymethyl group (CH(2)OH) for each compound. In parallel with these experimental studies, structure, energy, and potential energy surfaces of the hydroxymethyl group for these compounds were determined employing quantum mechanical calculations at the B3LYP level using the 6-311++G( * *) basis set. Values of the vicinal coupling constants involving (1)H and (13)C in the C5-C6 (omega) and C6-O6 (theta) torsion angles in the aldohexopyranoside model compounds were calculated with water as the solvent using the PCM method. To test the relationship between (3)J(CXCH) (X=C, O, S) and torsion angle C1-X (phi) around the anomeric center, the conformations of 24 derivatives of glucose and galactose, which represent sequences of atoms at the anomeric center of C-glycosides (C-C bond), O-glycosides (C-O bond), thioglycosides (C-S bond), glycosylamines (C-N bond), and glycosyl halides (C-halogen (F/Cl) bond) have been calculated. Nonlinear regression analysis of the coupling constants (1)J(C1,H1), (2)J(C5,H6R), (2)J(C5,H6S), (2)J(C6,H5), (3)J(C4,H6R), (3)J(C4,H6S), (2)J(H6R,H5), and (3)J(H5,H6R) as well as (3)J(CXCH) (X=C, O, S) on the dihedral angles omega, theta, and phi have yielded new Karplus equations. Good agreement between calculated and experimentally measured coupling constants revealed that the DFT method was able to accurately predict J-couplings in aqueous solutions.  相似文献   

6.
We have previously suggested that variations in the 31P chemical shifts of individual phosphates in duplex oligonucleotides are attributable to torsional angle changes in the deoxyribose phosphate backbone. This hypothesis is not directly supported by analysis of the 1H/31P two-dimensional J-resolved spectra of a number of mismatch dodecamer oligonucleotide duplexes including the following sequences: d-(CGTGAATTCGCG), d(CGUGAATTCGCG), d(CGGGAATTCGCG), d(CGAGAATTCGCG), and d(CGCGAATTCACG). The 31P NMR signals of the dodecamer mismatch duplexes were assigned by 2D 1H/31P pure absorption phase constant time (PAC) heteronuclear correlation spectra. From the assigned H3' and H4' signals, the 31P signals of the base-pair mismatch dodecamers were identified. JH3'-P coupling constants for each of the phosphates of the dodecamers were obtained from 1H/31P J-resolved selective proton flip 2D spectra. By use of a modified Karplus relationship, the C4'-C3'-O3'-P torsional angles (epsilon) were obtained. JH3'-P coupling constants were measured for many of the oligonucleotides as a function of temperature. There exists a good linear correlation between 31P chemical shifts and the epsilon torsional angle. This correlation can be further extended to the C3'-O3'-P-O5' torsional angle (zeta) by using a linear relationship between epsilon and zeta obtained from crystal structure studies. The 31P chemical shifts follow the general observation that the more internally the phosphate is located within the oligonucleotide sequence, the more upfield the 31P resonance occurs. In addition, 31P chemical shifts show sequence- and site-specific variations. Analysis of the backbone torsional angle variations from the coupling constant analysis has provided additional information regarding the origin of these variations in 31P chemical shifts.  相似文献   

7.
Two-dimensional 1H/31P dipolar heteronuclear correlation (HETCOR) magic-angle spinning nuclear magnetic resonance (NMR) is used to investigate the correlation of the lipid headgroup with various intra- and intermolecular proton environments. Cross-polarization NMR techniques involving 31P have not been previously pursued to a great extent in lipid bilayers due to the long 1H-31P distances and high degree of headgroup mobility that averages the dipolar coupling in the liquid crystalline phase. The results presented herein show that this approach is very promising and yields information not readily available with other experimental methods. Of particular interest is the detection of a unique lipid backbone-water intermolecular interaction in egg sphingomyelin (SM) that is not observed in lipids with glycerol backbones like phosphatidylcholines. This backbone-water interaction in SM is probed when a mixing period allowing magnetization exchange between different 1H environments via the nuclear Overhauser effect (NOE) is included in the NMR pulse sequence. The molecular information provided by these 1H/31P dipolar HETCOR experiments with NOE mixing differ from those previously obtained by conventional NOE spectroscopy and heteronuclear NOE spectroscopy NMR experiments. In addition, two-dimensional 1H/13C INEPT HETCOR experiments with NOE mixing support the 1H/31P dipolar HETCOR results and confirm the presence of a H2O environment that has nonvanishing dipolar interactions with the SM backbone.  相似文献   

8.
Summary We introduce the C-FIDS-1H,15N-HSQC experiment, a new method for the determination of 3J(H infi supN ,C infi sup ) coupling constants in proteins, yielding information about the torsional angle . It relies on the 1H,15N-HSQC or HNCO experiment, two of the the most sensitive heteronuclear correlation experiments for isotopically labeled proteins. A set of three 1H,15N-HSQC or HNCO spectra are recorded: a reference experiment in which the carbonyl spins are decoupled during t1 and t2, a second experiment in which they are decoupled exclusively during t1 and a third one in which they are coupled in t1 as well as t2. The last experiment yields an E.COSY-type pattern from which the 2J(H infi supN ,C infi-1 sup ) and 1J(Ni,C infi-1 sup ) coupling constants can be extracted. By comparison of the coupled multiplet (obtained from the second experiment) with the decoupled multiplet (obtained from the first experiment) convoluted with the 2J(H infi supN ,C infi-1 sup ) coupling, the 3J(H infi supN ,C infi sup ) coupling can be found in a one-parameter fitting procedure. The method is demonstrated for the protein rhodniin, containing 103 amino acids. Systematic errors due to differential relaxation are small for nJ(HN,C) couplings in biomacromolecules of the size currently under NMR spectroscopic investigation.  相似文献   

9.
Abstract

Assignment of the 1H and 31P resonances of a decamer DNA duplex, d(CGCTTAAGCG)2 was determined by two-dimensional COSY, NOESY and 1H- 31P Pure Absorption phase Constant time (PAC) heteronuclear correlation spectroscopy. The solution structure of the decamer was calculated by an iterative hybrid relaxation matrix method combined with NOESY-distance restrained molecular dynamics. The distances from the 2D NOESY spectra were calculated from the relaxation rate matrix which were evaluated from a hybrid NOESY volume matrix comprising elements from the experiment and those calculated from an initial structure. The hybrid matrix-derived distances were then used in a restrained molecular dynamics procedure to obtain a new structure that better approximates the NOESY spectra. The resulting partially refined structure was then used to calculate an improved theoretical NOESY volume matrix which is once again merged with the experimental matrix until refinement is complete. JH3′-P coupling constants for each of the phosphates of the decamer were obtained from 1H-31P J-resolved selective proton flip 2D spectra. By using a modified Karplus relationship the C4′-C3′-03′-P torsional angles (?) were obtained. Comparison of the 31P chemical shifts and JH3′-P coupling constants of this sequence has allowed a greater insight into the various factors responsible for 31P chemical shift variations in oligonucleotides. It also provides an important probe of the sequence-dependent structural variation of the deoxyribose phosphate backbone of DNA in solution. These correlations are consistent with the hypothesis that changes in local helical structure perturb the deoxyribose phosphate backbone. The variation of the 31P chemical shift, and the degree of this variation from one base step to the next is proposed as a potential probe of local helical conformation within the DNA double helix. The pattern of calculated ? and ζ torsional angles from the restrained molecular dynamics refinement agrees quite well with the measured JH3′-P coupling constants. Thus, the local helical parameters determine the length of the phosphodiester backbone which in turn constrains the phosphate in various allowed conformations.  相似文献   

10.
3hJH2H3trans-hydrogen bond scalar coupling constants have been observed for the first time in Watson-Crick AU base pairs in uniformly 15N-labeled RNA oligonucleotides using a new 2hJNN-HNN-E. COSY experiment. The experiment utilizes adenosine H2 (AH2) for original polarization and detection, while employing 2hJNNcouplings for coherence transfer across the hydrogen bonds (H-bonds). The H3 protons of uracil bases are unperturbed throughout the experiment so that these protons appear as passive spins in E. COSY patterns. 3hJH2H3coupling constants can therefore be accurately measured in the acquisition dimension from the displacement of the E. COSY multiplet components, which are separated by the relatively large 1JH3N3coupling constants in the indirect dimension of the two-dimensional experiment. The 3hJH2H3scalar coupling constants determined for AU base pairs in the two RNA hairpins examined here have been found to be positive and range in magnitude up to 1.8 Hz. Using a molecular fragment representation of an AU base pair, density functional theory/finite field perturbation theory (DFT/FPT) methods have been applied to attempt to predict the relative contributions of H-bond length and angular geometry to the magnitude of 3hJH2H3coupling constants. Although the DFT/FPT calculations did not reproduce the full range of magnitude observed experimentally for the 3hJH2H3coupling constants, the calculations do predict the correct sign and general trends in variation in size of these coupling constants. The calculations suggest that the magnitude of the coupling constants depends largely on H-bond length, but can also vary with differences in base pair geometry. The dependency of the 3hJH2H3coupling constant on H-bond strength and geometry makes it a new probe for defining base pairs in NMR studies of nucleic acids.  相似文献   

11.
Summary A simple heteronuclear relayed E.COSY pulse sequence with a minimum number of pulses is proposed for the quantitative determination of heteronuclear three-bond J-coupling constants in uniformly 13C-enriched polypeptide samples. Numerous heteronuclear three-bond coupling constants, including , , , and , can be determined for each residue from a single heteronuclear relayed E.COSY spectrum. Couplings relevant for stereospecific assignments as well as for the determination of dihedral angles in the amino acid backbone and in side chains are obtained. The method is demonstrated on the uniformly 13C-enriched decapeptide antamanide (-Val1-Pro2-Pro3-Ala4-Phe5-Phe6-Pro7-Pro8-Phe9-Phe10-).  相似文献   

12.
Joint composite-rotation adiabatic-sweep isotope filters are derived by combining the composite-rotation [Stuart AC et al. (1999) J Am Chem Soc 121: 5346–5347] and adiabatic-sweep [Zwahlen C et al. (1997) J Am Chem Soc 119:6711–6721; Kupče E, Freeman R (1997) J Magn Reson 127:36–48] approaches. The joint isotope filters have improved broadband filtration performance, even for extreme values of the one-bond 1H–13C scalar coupling constants in proteins and RNA molecules. An average Hamiltonian analysis is used to describe evolution of the heteronuclear scalar coupling interaction during the adiabatic sweeps within the isotope filter sequences. The new isotope filter elements permit improved selective detection of NMR resonance signals originating from 1H spins attached to an unlabeled natural abundance component of a complex in which the other components are labeled with 13C and 15N isotopes.  相似文献   

13.
Summary A new 1H−13C−31P triple resonance experiment is described which allows unambigous sequential backbone assignment in 13C-labeled oligonucleotides via through-bond coherence transfer from 31P via 13C to 1H. The approach employs INEPT to transfer coherence from 31P to 13C and homonuclear TOCSY to transfer the 13C coherence through the ribose ring, followed by 13C to 1H J-cross-polarisation. The efficiencies of the various possible transfer pathways are discussed. The most efficient route involves transfer of 31Pi coherence via C4′i and C4′i-1, because of the relatively large J′PC4 couplings involved. Via the homonuclear and heteronuclear mixing periods, the C4′i and C4′i-1 coherences are subsequently transferred to, amongst others, H1′i and H1′i-1, respectively, leading to a 2D 1H−31P spectrum which allows a sequential assignment in the 31P−1H1′ region of the spectrum, i.e. in the region where the proton resonances overlap least. The experiment is demonstrated on a 13C-labeled RNA hairpin with the sequence 5′(GGGC-CAAA-GCCU)3′.  相似文献   

14.
15.
A new method to measure 1J(Ni,C i) and 2J(Ni,C (i – 1)) coupling constants in proteins based on a J-modulated sensitivity enhanced HSQC was introduced. Coupling constants were measured in the denatured and in the native state of ubiquitin and found to depend on the conformation of the protein backbone. Using a combined data set of experimental coupling constants from ubiquitin and staphylococcal nuclease (Delaglio et al., 1991), the angular dependence of the coupling constants on the backbone angles and was investigated. It was found that the size of 2J(Ni,C (i – 1)) correlates strongly with the backbone conformation, while only a weak conformational dependence on the size of 1J(Ni,C i) coupling constants was observed. Coupling constants in the denatured state of ubiquitin were uniform along the sequence of the protein and not dependent on a given residue type. Furthermore it was shown that the observed coupling constants were in good agreement with predicted coupling constants using a simple model for the random coil.  相似文献   

16.
R V Hosur  K V Chary  A Saran  G Govil  H T Miles 《Biopolymers》1990,29(6-7):953-959
Homonuclear two-dimensional (J, delta) proton spectroscopy has been suggested as a method for the measurement of 1H-31P coupling constants in oligonucleotides. The technique has been applied to a dinucleoside monophosphate G2'p5'C and a deoxydecanucleotide d(ACATCGATGT). PCILO energy calculations have been carried out to find minimum energy conformations with respect to the DNA backbone torsion angle epsilon, and these have been considered for the interpretation of the observed H3'-31P coupling constants in oligonucleotides.  相似文献   

17.
The cyclodipeptides cyclo(L -alanyl-L -phenylalanyl) and cyclo(D -alanyl-L -phenylalanyl) were synthesized with various atoms substituted by the isotopes 15N and 13C. Thus, the coupling constants 15N–1H, 13C–1H, and 13C–15N could be obtained, in addition to the commonly used 1H–1H constants. The applicability of these coupling constants for obtaining conformational information on side chains and substituted 2,5-piperazinedione rings is discussed.  相似文献   

18.
Assignment of the 1H and 31P NMR spectra of an extrahelical adenosine tridecamer oligodeoxyribonucleotide duplex, d(CGCAGAATTCGCG)2, has been made by two-dimensional 1H-1H and heteronuclear 31P-1H correlated spectroscopy. The downfield 31P resonance previously noted by Patel et al. (1982) has been assigned by both 17O labeling of the phosphate as well as a pure absorption phase constant-time heteronuclear 31P-1H correlated spectrum and has been associated with the phosphate on the 3' side of the extrahelical adenosine. JH3'-P coupling constants for each of the phosphates of the tridecamer were obtained from the 1H-31P J-resolved selective proton-flip 2D spectrum. By use of a modified Karplus relationship the C4-C3'-O3-P torsional angles (epsilon) were obtained. There exists a good linear correlation between 31P chemical shifts and the epsilon torsional angle. The 31P chemical shifts and epsilon torsional angles follow the general observation that the more internal the phosphate is located within the oligonucleotide sequence, the more upfield the 31P resonance occurs. Because the extrahelical adenosine significantly distorts the deoxyribose phosphate backbone conformation even several bases distant from the extrahelical adenosine, 31P chemical shifts show complex site- and sequence-specific variations. Modeling and NOESY distance-restrained energy minimization and restrained molecular dynamics suggest that the extrahelical adenosine stacks into the duplex. However, a minor conformation is also observed in the 1H NMR, which could be associated with a structure in which the extrahelical adenosine loops out into solution.  相似文献   

19.
Summary A new 2D NMR pulse sequence for E.COSY-type measurement of JHH coupling constants is introduced. It exploits a heteronuclear spin, e.g., 13C, for displacement in the 1 frequency dimension via a large heteronuclear J coupling. The experiment is demonstrated by application to a heptapeptide at the natural abundance 13C level. It is suitable, for example, for measurement of 3JHH and 4JHH coupling constants in peptides and proteins.  相似文献   

20.
Theoretical calculations of the heteronuclear vicinal coupling constant 3J(13C′NCαH) in peptides have been carried out using the Dirac vector model. The results showed an angular dependence for this coupling constant, which can be expressed in the form 3J(13C′NCαH) = A cos2 θ + B cos θ + C, where A, B, and C are constants and θ is related to the torsional angle ? of the peptide backbone. The results of the present calculations are in very good agreement with those obtained using finite perturbation theory at the INDO level of approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号