首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The anticancer effects of α-santalol, a major component of sandalwood oil, have been reported against the development of certain cancers such as skin cancer both in vitro and in vivo. The primary objectives of the current study were to investigate the cancer preventive properties of α-santalol on human prostate cancer cells PC-3 (androgen independent and P-53 null) and LNCaP (androgen dependent and P-53 wild-type), and determine the possible mechanisms of its action. The effect of α-santalol on cell viability was determined by trypan blue dye exclusion assay. Apoptosis induction was confirmed by analysis of cytoplasmic histone-associated DNA fragmentation using both an apoptotic ELISA kit and a DAPI fluorescence assay. Caspase-3 activity was determined using caspase-3 (active) ELISA kit. PARP cleavage was analyzed using immunoblotting. α-Santalol at 25-75 μM decreased cell viability in both cell lines in a concentration and time dependent manner. Treatment of prostate cancer cells with α-santalol resulted in induction of apoptosis as evidenced by DNA fragmentation and nuclear staining of apoptotic cells by DAPI. α-Santalol treatment also resulted in activation of caspase-3 activity and PARP cleavage. The α-santalol-induced apoptotic cell death and activation of caspase-3 was significantly attenuated in the presence of pharmacological inhibitors of caspase-8 and caspase-9. In conclusion, the present study reveals the apoptotic effects of α-santalol in inhibiting the growth of human prostate cancer cells.  相似文献   

2.
3.
Dihydromyricetin (DHM), a Rattan tea extract, has recently been shown to have anti-cancer activity in mammalian cells. In this study, we investigated the effect of DHM on human melanoma cells. Apart from induction of apoptosis, we demonstrated that DHM induced an autophagic response. Moreover, pharmacological inhibition or genetic blockade of autophagy enhanced DHM-induced cell death and apoptosis, indicating the cytoprotective role of autophagy in DHM-treated human melanoma cells. Further study suggested that the nuclear factor kappa B (NF-κB) signalling pathway was involved in DHM-induced autophagy. Moreover, N-acetyl-cysteine (NAC), an ROS scavenger, abrogated the effects of DHM on NF-κB-dependent autophagy. Taken together, this evidence demonstrates that a strategy of blocking ROS-NF-κB-dependent autophagy to enhance the activity of DHM warrants further attention for the treatment of human melanoma.  相似文献   

4.
5.
《Phytomedicine》2014,21(11):1483-1489
We have previously demonstrated that Greek thyme honey inhibits significantly the cell viability of human prostate cancer cells. Herein, 15 thyme honey samples from several regions of Greece were submitted to phytochemical analysis for the isolation, identification and determination (through modern spectral means) of the unique thyme honey monoterpene, the compound trihydroxy ketone E-4-(1,2,4-trihydroxy-2,6,6-trimethylcyclohexyl)-but-3-en-2-one.We investigated the anti-growth and apoptotic effects of the trihydroxy ketone on PC-3 human androgen independent prostate cancer cells using MTT assay and Annexin V-FITC respectively. The molecular pathways involved to such effects were further examined by evaluating its ability to inhibit (a) the NF-κB phosphorylation (S536), (b) JNK and Akt phosphorylation (Thr183/Tyr185 and S473 respectively) and (c) IL-6 production, using ELISA method. The anti-microbial effects of the trihydroxy ketone against a panel of nine pathogenic bacteria and three fungi were also assessed.The trihydroxy ketone exerted significant apoptotic activity in PC-3 prostate cancer cells at 100 μM, while it inhibited NF-κB phosphorylation and IL-6 secretion at a concentration range 10−6–10−4 M. Akt and JNK signaling were not found to participate in this process. The trihydroxy ketone exerted significant anti-microbial profile against many human pathogenic bacteria and fungi (MIC values ranged from 0.04 to 0.57 mg/ml). Conclusively, the Greek thyme honey-derived monoterpene exerted significant apoptotic activity in PC-3 cells, mediated, at least in part, through reduction of NF-κB activity and IL-6 secretion and may play a key role in the anti-growth effect of thyme honey on prostate cancer cells.  相似文献   

6.
To investigate the anti-proliferative effect of NF-κB inhibitor, a series of analogs of (E)-1-(2-hydroxy-6-(isopentyloxy)phenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one (5a) were prepared and evaluated for their NF-κB inhibition and anti-proliferative activity against various human cancer cell lines. Compounds (E)-1-(2-(3,3-dimethylbutoxy)-6-hydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one (5e) and (E)-4-(3-(2-(3,3-dimethylbutoxy)-6-hydroxyphenyl)-3-oxoprop-1-enyl)benzenesulfonamide (5p) showed good NF-κB inhibition as well as potent anti-proliferative activity. SAR studies showed that all the compounds with potent or moderate NF-κB inhibition displayed good anti-proliferative activity. All the analogs (5br) maintained a good correlation between their NF-κB inhibition and anti-proliferative activity though the extent is not directly proportional to each other.  相似文献   

7.
Bladder cancer-associated protein gene (BLCAP) is a novel candidate tumor suppressor gene identified from the human bladder carcinoma. Our previous studies have shown that BLCAP overexpression could inhibit cell growth by inducing apoptosis in HeLa cells [Zuo Z, Zhao M, Liu J, Gao G, Wu X: Tumor Biol 27: 221–226, 2006]. Such evidence suggests the alterations in BLCAP may play an important role in tumorigenesis. To further study the biological function of the BLCAP gene, we constructed a recombinant retroviral vector encoding BLCAP cDNA. Overexpressed BLCAP, via stable infection of exogenous BLCAP, resulted in growth inhibition of the human tongue cancer cell line Tca8113 in vitro, accompanied by S phase cell cycle arrest and apoptosis. The growth inhibition was correlated with up-regulation of p21WAF1/CIP1 expression and down-regulation of Bcl-XL and Bcl-2 expressions. However, p53 expression and NF-κB activity remained unchanged post infection. Furthermore, no changes in p53 phosphorylation at Ser46 and nuclear localization, which are critical to p53 function, were observed in BLCAP-overexpressed cells. Taken together, BLCAP may play a role not only in regulating cell proliferation but also in coordinating apoptosis and cell cycle via a novel way independent of p53 and NF-κB. Jun Yao and Li Duan contributed equally to this work.  相似文献   

8.
Oleuropein is one of the most abundant phenolic compounds found in olives. Epidemiological studies have indicated that an increasing intake of olive oil can significantly reduce the risk of breast cancer. However, the potential effect(s) of oleuropein on estrogen receptor (ER)-negative breast cancer is not fully understood. This study aims to understand the anticancer effects and underlying mechanism(s) of oleuropein on ER-negative breast cancer cells in vitro. The effect of oleuropein on the viability of breast cancer cell lines was examined by mitochondrial dye-uptake assay, apoptosis by flow cytometric analysis, nuclear factor-κB (NF-κB) activation by DNA binding/reporter assays and protein expression by Western blot analysis. In the present report, thiazolyl blue tetrazolium bromide assay results indicated that oleuropein inhibited the viability of breast cancer cells, and its effects were more pronounced on MDA-MB-231 as compared with MCF-7 cells. It was further found that oleuropein increased the level of reactive oxygen species and also significantly inhibited cellular migration and invasion. In addition, the activation of NF-κB was abrogated as demonstrated by Western blot analysis, NF-κB-DNA binding, and luciferase assays. Overall, the data indicates that oleuropein can induce substantial apoptosis via modulating NF-κB activation cascade in breast cancer cells.  相似文献   

9.
10.

Objectives

To investigate the functional roles of bone marrow stromal cell antigen 2 (BST2) in gastric cancer (GC) cells and its implications in the development of GC patients.

Results

BST2 was frequently overexpressed in GC tissues compared with the adjacent non-tumorous tissues, and high BST2 expression was correlated with tumor stage and lymphatic metastasis. Furthermore, in vitro experiments demonstrated that knockdown of BST2 by siRNA inhibited cell proliferation, induced apoptosis and repressed cell motility in GC cells. In addition, the pro-tumor function of BST2 in GC was mediated partly through the NF-κB signaling.

Conclusion

BST2 possesses the oncogenic potential in GC by regulating the proliferation, apoptosis, and migratory ability of GC cells, thereby BST2 could be a potential therapeutic target for the treatment of GC.
  相似文献   

11.
12.
13.
14.
Highly polar xanthophylls of 9′-cis-neoxanthin (neoxanthin) and fucoxanthin, which have the characteristic structure of an epoxy group and an allenic bond, were previously found to induce apoptosis in human prostate cancer cells. In the present study, we found apoptosis induction by neoxanthin in HCT116 human colon cancer cells and examined the induction mechanism. The cells exposed to 20 μM neoxanthin clearly showed chromatin condensation, DNA fragmentation, and an increase in hypodiploid cells. Neoxanthin treatment increased the activities of caspase-3, -8 and -9, and the protein levels of their active subunits, except in the case of caspase-8. The treatment also caused the loss of mitochondrial transmembrane potential at an early stage and subsequently the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria to cytosol. The exposure of neoxanthin directly to mitochondria isolated from the cells enhanced the release of cytochrome c and AIF in a dose-dependent manner. Approximately 50% of the neoxanthin taken up into the HCT116 cells accumulated in the mitochondrial fraction. These results suggest that the accumulation of neoxanthin in mitochondria causes the loss of mitochondrial transmembrane potential and thereafter releases cytochrome c and AIF, leading to the execution of apoptosis.  相似文献   

15.
《Cellular signalling》2014,26(3):564-569
Gastric cancer remains the main cause of cancer related deaths all over the world, and upregulated COX2 is a key player in its development. The mechanism as to how COX2 is regulated during the gastric cancer development is largely unknown. In this study, we found that the expression of COX2 was closely correlated with NF-κB activity. Strikingly, NF-κB activity was not absolutely consistent with its nuclear localization. Especially, in some cancer cell lines, such as MKN28, there were abundant nuclear localized NF-κB, while NF-κB luciferase activity in this cell line was relatively low. Furthermore, FOXP3 was found to be abundantly expressed in these cells. When the nuclear localized NF-κB expression was adjusted with the expression of FOXP3, it then correlated well with NF-κB activity. Molecularly, increased FOXP3 expression can interact with NF-κB and thus repress its activity. Knockdown of FOXP3 could increase NF-κB activity, COX2 expression, and cell migration. Taken together, our study revealed that function of FOXP3 as a negative regulator of NF-κB activity and thus plays a tumor suppressor role by reducing cell metastasis.  相似文献   

16.
Long-term clinical observations and ongoing studies have shown antitumor effects of external Qi of Yan Xin Qigong (YXQG-EQ) that originated from traditional Chinese medicine (TCM). In order to understand the molecular mechanisms underlying the antitumor effects of YXQG-EQ, we investigate the effects of YXQG-EQ on growth and apoptosis in androgen-independent prostate cancer PC3 cells. We found that exposure to YXQG-EQ led to G2/M arrest associated with reduced cyclin B1 expression and apoptosis in PC3 cells. YXQG-EQ treatment inhibited constitutive and epidermal growth factor-induced Akt phosphorylation, basal and TNF-α-induced NF-κB activation, and downregulated anti-apoptotic Bcl-2 and Bcl-xL expression. In contrast, exposure to YXQG-EQ increased phosphorylation of Akt and Erk1/2 in human umbilical vein endothelial cells (HUVEC), and had no cytotoxic effect on either HUVEC or peripheral blood mononuclear cells (PBMC). These results indicate that YXQG-EQ has profound effects on growth and apoptosis of prostate cancer cells by targeting survival pathways including the Akt and NF-κB pathways.  相似文献   

17.
Mutations in PKHD1 (polycystic kidney and hepatic disease gene 1) gene cause the autosomal recessive polycystic kidney disease (ARPKD). Fibrocystin/polyductin (FPC), encoded by PKHD1, is a membrane-associated receptor-like protein. Although it is widely accepted that cystogenesis is mostly due to aberrant cell proliferation and apoptosis, it is still unclear how apoptosis is regulated. The aim of this study is to analyze the relationship among apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor κB (NF-κB) in FPC knockdown kidney cells. We show that PKHD1-silenced HEK293 cells demonstrate a higher PI3K/Akt activity. Selective inhibition of PI3K/Akt using LY294002 or wortmannin in these cells increases serum starvation-induced HEK293 cell apoptosis with a concomitant decrease in cell proliferation and higher caspase-3 activity. PI3K/Akt inhibition also leads to increased NF-κB activity in these cells. We conclude that the PI3K/Akt pathway is involved in apoptotic function in PKHD1-silenced cells, and PI3K/Akt inhibition correlates with upregulation of NF-κB activity. These observations provide a potential platform for determining FPC function and therapeutic investigation of ARPKD.  相似文献   

18.
Phytoestrogens are known to prevent tumor induction. But their molecular mechanisms of action are still unknown. This study aimed to examine the effect of apigenin on proliferation and apoptosis in HER2-expressing breast cancer cells. In our experiments, apigenin inhibited the proliferation of MCF-7 vec and MCF-7 HER2 cells. This growth inhibition was accompanied with an increase of sub G(0)/G(1) apoptotic fractions. Overexpression of HER2 did not confer resistance to apigenin in MCF-7 cells. Apigenin-induced extrinsic apoptosis pathway up-regulating the levels of cleaved caspase-8, and inducing the cleavage of poly (ADP-ribose) polymerase, whereas apigenin did not induce apoptosis via intrinsic mitochondrial apoptosis pathway since this compound did not decrease mitochondrial membrane potential maintaining red fluorescence and did not affect the levels of B-cell lymphoma 2 (BCL2) and Bcl-2-associated X protein. Moreover, apigenin reduced the tyrosine phosphorylation of HER2 (phospho-HER2 level) in MCF-7 HER2 cells, and up-regulated the levels of p53, phospho-p53 and p21 in MCF-7 vec and MCF-7 HER2 cells. This suggests that apigenin induces apoptosis through p53-dependent pathway. Apigenin also reduced the expression of phospho-JAK1 and phospho-STAT3 and decreased STAT3-dependent luciferase reporter gene activity in MCF-7 vec and MCF-7 HER2 cells. Apigenin decreased the phosphorylation level of IκBα in the cytosol, and abrogated the nuclear translocation of p65 within the nucleus suggesting that it blocks the activation of NFκB signaling pathway in MCF-7 vec and MCF-7 HER2 cells. Our study indicates that apigenin could be a potential useful compound to prevent or treat HER2-overexpressing breast cancer.  相似文献   

19.
Although fluoxetine, a selective serotonin reuptake inhibitor, is known to demonstrate anti-inflammatory activity, little information is available on the effect of fluoxetine regarding intestinal inflammation. This study investigates the role of fluoxetine in the attenuation of acute murine colitis by suppression of the NF-κB pathway in intestinal epithelial cells (IEC). Fluoxetine significantly inhibited activated NF-κB signals and the upregulated expression of interleukin-8 (IL-8) in COLO 205 colon epithelial cells stimulated with tumor necrosis factor-α (TNF-α). Pretreatment with fluoxetine attenuated the increased IκB kinase (IKK) and IκBα phosphorylation induced by TNF-α. In a murine model, administration of fluoxetine significantly reduced the severity of dextran sulfate sodium (DSS)-induced colitis, as assessed by the disease activity index, colon length, and histology. In addition, the DSS-induced phospho-IKK activation, myeloperoxidase activity, a parameter of neutrophil accumulation, and the secretion of macrophage-inflammatory protein-2, a mouse homolog of IL-8, were significantly decreased in fluoxetine-pretreated mice. Moreover, fluoxetine significantly attenuated the development of colon cancer in mice inoculated with azoxymethane and DSS. These results indicate that fluoxetine inhibits NF-κB activation in IEC and that it ameliorates DSS-induced acute murine colitis and colitis-associated tumorigenesis, suggesting that fluoxetine is a potential therapeutic agent for the treatment of inflammatory bowel disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号