首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
藻类植物的cpDNA结构复杂,普遍缺失反向重复序列IR,且存在IR的藻类植物种类的cpDNA也有IR变短退化迹象.藻类植物的cpDNA包含的基因一般比高等植物要多,编码能力更强.藻类植物cpDNA全序列的测定方法主要是Fosmid文库构建,配合使用Long-PCR技术.该文对国内外有关藻类植物叶绿体基因组结构、叶绿体编码基因、叶绿体基因组在藻类系统发育中的应用以及藻类植物叶绿体基因组的提取和序列测定方法等进行综述,为藻类植物的系统发育和叶绿体起源以及功能基因组学的研究提供理论依据.  相似文献   

2.
One of the major challenges for researchers studying phylogeography and shallow-scale phylogenetics is the identification of highly variable and informative nuclear loci for the question of interest. Previous approaches to locus identification have generally required extensive testing of anonymous nuclear loci developed from genomic libraries of the target taxon, testing of loci of unknown utility from other systems, or identification of loci from the nearest model organism with genomic resources. Here, we present a fast and economical approach to generating thousands of variable, single-copy nuclear loci for any system using next-generation sequencing. We performed Illumina paired-end sequencing of three reduced-representation libraries (RRLs) in chorus frogs (Pseudacris) to identify orthologous, single-copy loci across libraries and to estimate sequence divergence at multiple taxonomic levels. We also conducted PCR testing of these loci across the genus Pseudacris and outgroups to determine whether loci developed for phylogeography can be extended to deeper phylogenetic levels. Prior to sequencing, we conducted in silico digestion of the most closely related reference genome (Xenopus tropicalis) to generate expectations for the number of loci and degree of coverage for a particular experimental design. Using the RRL approach, we: (i) identified more than 100,000 single-copy nuclear loci, 6339 of which were obtained for divergent conspecifics and 904 of which were obtained for heterospecifics; (ii) estimated average nuclear sequence divergence at 0.1% between alleles within an individual, 1.1% between conspecific individuals that represent two different clades, and 1.8% between species; and (iii) determined from PCR testing that 53% of the loci successfully amplify within-species and also many amplify to the genus-level and deeper in the phylogeny (16%). Our study effectively identified nuclear loci present in the genome that have levels of sequence divergence on par with mitochondrial loci commonly used in phylogeography. Specifically, we estimated that ~7% of loci in the chorus frog genome are >3% divergent within species; this translates to a prediction of approximately 50,000 single-copy loci in the genome with >3% divergence. Moreover, successful amplification of many loci at deeper phylogenetic levels indicates that the RRL approach represents an efficient method for rapid identification of informative loci for both phylogenetics and phylogeography. We conclude by making recommendations for minimizing the cost and maximizing the efficiency of locus identification for future studies in this field.  相似文献   

3.
Mitochondrial genome sequences are important markers for phylogenetics but taxon sampling remains sporadic because of the great effort and cost required to acquire full-length sequences. Here, we demonstrate a simple, cost-effective way to sequence the full complement of protein coding mitochondrial genes from pooled samples using the 454/Roche platform. Multiplexing was achieved without the need for expensive indexing tags (‘barcodes’). The method was trialled with a set of long-range polymerase chain reaction (PCR) fragments from 30 species of Coleoptera (beetles) sequenced in a 1/16th sector of a sequencing plate. Long contigs were produced from the pooled sequences with sequencing depths ranging from ∼10 to 100× per contig. Species identity of individual contigs was established via three ‘bait’ sequences matching disparate parts of the mitochondrial genome obtained by conventional PCR and Sanger sequencing. This proved that assembly of contigs from the sequencing pool was correct. Our study produced sequences for 21 nearly complete and seven partial sets of protein coding mitochondrial genes. Combined with existing sequences for 25 taxa, an improved estimate of basal relationships in Coleoptera was obtained. The procedure could be employed routinely for mitochondrial genome sequencing at the species level, to provide improved species ‘barcodes’ that currently use the cox1 gene only.  相似文献   

4.
Species concept and delimitation are fundamental to taxonomic and evolutionary studies. Both inadequate informative sites in the molecular data and limited taxon sampling have often led to poor phylogenetic resolution and incorrect species delineation. Recently, the whole chloroplast genome sequences from extensive herbarium specimen samples have been shown to be effective to amend the problem. Stachyuraceae are a small family consisting of only one genus Stachyurus of six to 16 species. However, species delimitation in Stachyurus has been highly controversial because of few and generally unstable morphological characters used for classification. In this study, we sampled 69 individuals of seven species (each with at least three individuals) covering the entire taxonomic diversity, geographic range, and morphological variation of Stachyurus from herbarium specimens for genome‐wide plastid gene sequencing to address species delineation in the genus. We obtained high‐quality DNAs from specimens using a recently developed DNA reconstruction technique. We first assembled four whole chloroplast genome sequences. Based on the chloroplast genome and one nuclear ribosomal DNA sequence of Stachyurus, we designed primers for multiplex polymerase chain reaction and high throughput sequencing of 44 plastid loci for species of Stachyurus. Data of these chloroplast DNA and nuclear ribosomal DNA internal transcribed spacer sequences were used for phylogenetic analyses. The phylogenetic results showed that the Japanese species Stachyurus praecox Siebold & Zucc. was sister to the rest in mainland China, which indicated a typical Sino‐Japanese distribution pattern. Based on diagnostic morphological characters, distinct distributional range, and monophyly of each clade, we redefined seven species for Stachyurus following an integrative species concept, and revised the taxonomy of the family based on previous reports and specimens, in particular the type specimens. Furthermore, our divergence time estimation results suggested that Stachyuraceae split from its sister group Crossosomataceae from the New World at ca. 54.29 Mya, but extant species of Stachyuraceae started their diversification only recently at ca. 6.85 Mya. Diversification time of Stachyurus in mainland China was estimated to be ca. 4.45 Mya. This research has provided an example of using the herbarium specimen‐based phylogenomic approach in resolving species boundaries in a taxonomically difficult genus.  相似文献   

5.
The field of plant molecular systematics is expanding rapidly, and with it new and refined methods are coming into use. This paper reviews recent advances in experimental methods and data analysis, as applied to the chloroplast genome. Restriction site mapping of the chloroplast genome has been used widely, but is limited in the range of taxonomic levels to which it can be applied. The upper limits (i.e., greatest divergence) of its application are being explored by mapping of the chloroplast inverted repeat region, where rates of nucleotide substitution are low. The lower limits of divergence amenable to restriction site study are being examined using restriction enzymes with 4-base recognition sites to analyze polymerase chain reaction (PCR)-amplified portions of the chloroplast genome that evolve rapidly. The comparison of DNA sequences is the area of molecular systematics in which the greatest advances are being made. PCR and methods for direct sequencing of PCR products have resulted in a mushrooming of sequence data. In theory, any degree of divergence is amenable to comparative sequencing studies. In practice, plant systematists have focused on two slowly evolving sequences (rbcL and rRNA genes). More rapidly evolving DNA sequences, including rapidly changing chloroplast genes, chloroplast introns, and intergenic spacers, and the noncoding portions of the nuclear ribosomal RNA repeat, also are being investigated for comparative purposes. The relative advantages and disadvantages of comparative restriction site mapping and DNA sequencing are reviewed. For both methods, the analysis of resulting data requires sufficient taxon and character sampling to achieve the best possible estimate of phylogenetic relationships. Parsimony analysis is particularly sensitive to the issue of taxon sampling due to the problem of long branches attracting on a tree. However, data sets with many taxa present serious computational difficulties that may result in the inability to achieve maximum parsimony or to find all shortest trees.  相似文献   

6.
Chloroplast genomes supply indispensable information that helps improve the phylogenetic resolution and even as organelle‐scale barcodes. Next‐generation sequencing technologies have helped promote sequencing of complete chloroplast genomes, but compared with the number of angiosperms, relatively few chloroplast genomes have been sequenced. There are two major reasons for the paucity of completely sequenced chloroplast genomes: (i) massive amounts of fresh leaves are needed for chloroplast sequencing and (ii) there are considerable gaps in the sequenced chloroplast genomes of many plants because of the difficulty of isolating high‐quality chloroplast DNA, preventing complete chloroplast genomes from being assembled. To overcome these obstacles, all known angiosperm chloroplast genomes available to date were analysed, and then we designed nine universal primer pairs corresponding to the highly conserved regions. Using these primers, angiosperm whole chloroplast genomes can be amplified using long‐range PCR and sequenced using next‐generation sequencing methods. The primers showed high universality, which was tested using 24 species representing major clades of angiosperms. To validate the functionality of the primers, eight species representing major groups of angiosperms, that is, early‐diverging angiosperms, magnoliids, monocots, Saxifragales, fabids, malvids and asterids, were sequenced and assembled their complete chloroplast genomes. In our trials, only 100 mg of fresh leaves was used. The results show that the universal primer set provided an easy, effective and feasible approach for sequencing whole chloroplast genomes in angiosperms. The designed universal primer pairs provide a possibility to accelerate genome‐scale data acquisition and will therefore magnify the phylogenetic resolution and species identification in angiosperms.  相似文献   

7.
To better understand organelle genome evolution of the ulvophycean green alga Capsosiphon fulvescens, we sequenced and characterized its complete chloroplast genome. The circular chloroplast genome was 111,561 bp in length with 31.3% GC content that contained 108 genes including 77 protein‐coding genes, two copies of rRNA operons, and 27 tRNAs. In this analysis, we found the two types of isoform, called heteroplasmy, were likely caused by a flip‐flop organization. The flip‐flop mechanism may have caused structural variation and gene conversion in the chloroplast genome of C. fulvescens. In a phylogenetic analysis based on all available ulvophycean chloroplast genome data, including a new C. fulvescens genome, we found three major conflicting signals for C. fulvescens and its sister taxon Pseudoneochloris marina within 70 individual genes: (i) monophyly with Ulotrichales, (ii) monophyly with Ulvales, and (iii) monophyly with the clade of Ulotrichales and Ulvales. Although the 70‐gene concatenated phylogeny supported monophyly with Ulvales for both species, these complex phylogenetic signals of individual genes need further investigations using a data‐rich approach (i.e., organelle genome data) from broader taxon sampling.  相似文献   

8.
Little is known about the variations of nematode mitogenomes (mtDNA). Sequencing a complete mtDNA using a PCR approach remains a challenge due to frequent genome reorganizations and low sequence similarities between divergent nematode lineages. Here, a genome skimming approach based on HiSeq sequencing (shotgun) was used to assemble de novo the first complete mtDNA sequence of a root-knot nematode (Meloidogyne graminicola). An AT-rich genome (84.3%) of 20,030 bp was obtained with a mean sequencing depth superior to 300. Thirty-six genes were identified with a semi-automated approach. A comparison with a gene map of the M. javanica mitochondrial genome indicates that the gene order is conserved within this nematode lineage. However, deep genome rearrangements were observed when comparing with other species of the superfamily Hoplolaimoidea. Repeat elements of 111 bp and 94 bp were found in a long non-coding region of 7.5 kb, as similarly reported in Mjavanica and Mhapla. This study points out the power of next generation sequencing to produce complete mitochondrial genomes, even without a reference sequence, and possibly opening new avenues for species/race identification, phylogenetics and population genetics of nematodes.  相似文献   

9.
Shi C  Hu N  Huang H  Gao J  Zhao YJ  Gao LZ 《PloS one》2012,7(2):e31468

Background

Chloroplast genomes supply valuable genetic information for evolutionary and functional studies in plants. The past five years have witnessed a dramatic increase in the number of completely sequenced chloroplast genomes with the application of second-generation sequencing technology in plastid genome sequencing projects. However, cost-effective high-throughput chloroplast DNA (cpDNA) extraction becomes a major bottleneck restricting the application, as conventional methods are difficult to make a balance between the quality and yield of cpDNAs.

Methodology/Principal Findings

We first tested two traditional methods to isolate cpDNA from the three species, Oryza brachyantha, Leersia japonica and Prinsepia utihis. Both of them failed to obtain properly defined cpDNA bands. However, we developed a simple but efficient method based on sucrose gradients and found that the modified protocol worked efficiently to isolate the cpDNA from the same three plant species. We sequenced the isolated DNA samples with Illumina (Solexa) sequencing technology to test cpDNA purity according to aligning sequence reads to the reference chloroplast genomes, showing that the reference genome was properly covered. We show that 40–50% cpDNA purity is achieved with our method.

Conclusion

Here we provide an improved method used to isolate cpDNA from angiosperms. The Illumina sequencing results suggest that the isolated cpDNA has reached enough yield and sufficient purity to perform subsequent genome assembly. The cpDNA isolation protocol thus will be widely applicable to the plant chloroplast genome sequencing projects.  相似文献   

10.
Despite their traditional and continuing prominence in studies of interordinal mammalian phylogenetics, treeshrews (order Scandentia) remain relatively unstudied with respect to their intraordinal relationships. At the same time, significant morphological variation among living treeshrews has been shown to have direct relevance to higher-level interpretations of character state change as reconstructed in traditional interordinal studies, which have often included only a single species of treeshrew. Therefore, the importance of resolving relationships among treeshrews extends well beyond a better understanding of patterns of diversification within the order. A recent review highlighted several shortcomings in published studies of treeshrew phylogenetics based on morphology. Here we present the first investigation of treeshrew phylogenetics based on DNA sequences, utilizing previously published sequences from the mitochondrial 12S rRNA gene and combining them with newly generated sequence data from 15 species. Parsimony, likelihood, and Bayesian analyses all strongly support a sister relationship between Ptilocercus and the remaining species, further substantiating its recent elevation to familial status. Dendrogale is consistently recovered as the next taxon to diverge, but relationships among the remaining taxa are poorly supported by these data. We provide evidence for a relatively rapid radiation within the genera Tupaia and Urogale, but limited resolution precludes more than a cursory interpretation of biogeographic patterns.  相似文献   

11.
Plant DNA barcoding: from gene to genome   总被引:2,自引:0,他引:2       下载免费PDF全文
DNA barcoding is currently a widely used and effective tool that enables rapid and accurate identification of plant species; however, none of the available loci work across all species. Because single‐locus DNA barcodes lack adequate variations in closely related taxa, recent barcoding studies have placed high emphasis on the use of whole‐chloroplast genome sequences which are now more readily available as a consequence of improving sequencing technologies. While chloroplast genome sequencing can already deliver a reliable barcode for accurate plant identification it is not yet resource‐effective and does not yet offer the speed of analysis provided by single‐locus barcodes to unspecialized laboratory facilities. Here, we review the development of candidate barcodes and discuss the feasibility of using the chloroplast genome as a super‐barcode. We advocate a new approach for DNA barcoding that, for selected groups of taxa, combines the best use of single‐locus barcodes and super‐barcodes for efficient plant identification. Specific barcodes might enhance our ability to distinguish closely related plants at the species and population levels.  相似文献   

12.
As systematists grapple with assembling the Tree of Life, recent studies have encouraged a genomic-scale approach, obtaining DNA sequence data for entire nuclear, plastid or mitochondrial genomes for a few exemplar taxa. Some have proclaimed that this comparative genomic strategy heralds the end of incongruence in phylogeny reconstruction. Although we applaud the use of many genes to resolve phylogenetic patterns, there is a significant caveat. In spite of, or even because of, the abundant data per taxon, whole-genome sequencing for a few exemplars can provide completely resolved and strongly supported, but incorrect, evolutionary reconstructions. We provide a conspicuous example that includes Amborella, the putative sister of all other extant angiosperms, highlighting the limits of phylogenetics when whole genomes are used but taxon sampling is poor.  相似文献   

13.
? Premise of study: To reliably identify lineages below the species level such as subspecies or varieties, we propose an extension to DNA-barcoding using next-generation sequencing to produce whole organellar genomes and substantial nuclear ribosomal sequence. Because this method uses much longer versions of the traditional DNA-barcoding loci in the plastid and ribosomal DNA, we call our approach ultra-barcoding (UBC). ? Methods: We used high-throughput next-generation sequencing to scan the genome and generate reliable sequence of high copy number regions. Using this method, we examined whole plastid genomes as well as nearly 6000 bases of nuclear ribosomal DNA sequences for nine genotypes of Theobroma cacao and an individual of the related species T. grandiflorum, as well as an additional publicly available whole plastid genome of T. cacao. ? Key results: All individuals of T. cacao examined were uniquely distinguished, and evidence of reticulation and gene flow was observed. Sequence variation was observed in some of the canonical barcoding regions between species, but other regions of the chloroplast were more variable both within species and between species, as were ribosomal spacers. Furthermore, no single region provides the level of data available using the complete plastid genome and rDNA. ? Conclusions: Our data demonstrate that UBC is a viable, increasingly cost-effective approach for reliably distinguishing varieties and even individual genotypes of T. cacao. This approach shows great promise for applications where very closely related or interbreeding taxa must be distinguished.  相似文献   

14.
郑巍  罗阿蓉  史卫峰  郑为民  朱朝东 《昆虫学报》2013,56(10):1217-1228
随着生物技术的不断发展和系统发育学的深入研究, 在重构系统发育树时, 研究人员往往要面对更多的挑战和困难, 比如: (1)需要分析的样本数(物种数或个体数)不断增加; (2)需要分析的数据量迅速扩大。尤其在基因组测序技术的推动下, 基于分子信息的系统发育重建需要极大的计算量, 因此数学方法、 计算机技术以及其他辅助工具对于系统发育重建的效率和精确度起着至关重要的作用。最大简约法(maximum parsimony)是一种重要的系统发育重建方法, 提高其计算效率对系统发育学研究具有重要意义, 针对该算法的优化改进需要生物学家和计算机专家的共同努力。本文通过详细地阐述最大简约法的计算流程, 分析其参数选择对计算效率的影响, 帮助更多的计算机使用者, 在并不了解系统发育学基础的情况下, 更方便地针对实际的系统发育算法问题给出更好、 更快、 更精准的解决方案; 同时为系统发育研究工作者, 较为清晰地解释最大简约法的构树思想和计算逻辑, 推动针对最大简约法的不断改进与优化。  相似文献   

15.
Chloroplast DNA sequence data are a versatile tool for plant identification or barcoding and establishing genetic relationships among plant species. Different chloroplast loci have been utilized for use at close and distant evolutionary distances in plants, and no single locus has been identified that can distinguish between all plant species. Advances in DNA sequencing technology are providing new cost‐effective options for genome comparisons on a much larger scale. Universal PCR amplification of chloroplast sequences or isolation of pure chloroplast fractions, however, are non‐trivial. We now propose the analysis of chloroplast genome sequences from massively parallel sequencing (MPS) of total DNA as a simple and cost‐effective option for plant barcoding, and analysis of plant relationships to guide gene discovery for biotechnology. We present chloroplast genome sequences of five grass species derived from MPS of total DNA. These data accurately established the phylogenetic relationships between the species, correcting an apparent error in the published rice sequence. The chloroplast genome may be the elusive single‐locus DNA barcode for plants.  相似文献   

16.
系统发育多样性测度及其在生物多样性保护中的应用   总被引:1,自引:1,他引:1  
生物多样性保护面临两个基本问题:如何确定生物多样性测度以及如何保护生物多样性。传统的生物多样性测度是以物种概念为基础的,用生态学和地理学方法确定各种生物多样性指数。其测度依赖于样方面积的大小,并且所有的物种在分类上同等对待。系统发育多样性测度基于系统发育和遗传学的理论和方法,能确定某一物种对类群多样性的贡献大小。该方法比较复杂,只有在类群的系统发育或遗传资料比较齐全时方能应用。本文认为,物种生存力途径和系统发育多样性测度相结合有助于确定物种和生态系统保护的优先秩序。  相似文献   

17.
Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina) and Ion Torrent (Life Technology) sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare). Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels) between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis.  相似文献   

18.
Two or more exemplars of the same taxon forming a nonmonophyletic group on a molecular tree may be viewed as representing surviving populations of a deep shared ancestral taxon, and if different species of the same genus, then theoretically phenotypically static remnants of punctuated equilibrium. That taxon may be mapped on a molecular cladogram and evolutionarily resolved at the taxon level inclusive of all exemplars. The technique for mapping taxa on a molecular tree, termed here caulistics, is much like mapping traits but recovers macroevolutionary information at the taxon level. All lineages arising from the mapped taxon are its direct descendants. Mapped taxa superimposed or overlapping may reveal packaged adaptive traits. When a mapped taxon is well split by another mapped taxon on a molecular tree, atavistic saltation based on triggering an epigenetically retained trait complex is a theoretical explanation. Caulistics combines traditional taxonomy and molecular phylogenetics to reveal previously unknown aspects of the macroevolutionary past.  相似文献   

19.
High-throughput sequencing is fundamentally altering traditional phylogenetic classifications. While the Angiosperm Phylogeny Group (APG) III system based on chloroplast sequences has opened up a new era of angiosperm molecular classification, the use of nuclear genome sequences is more helpful for a precise phylogenetic analysis. However, such attempts have so far been applied to only a very limited number of angiosperm plant families. We constructed a phylogenetic tree of 25 plant species with well assembled genome sequences representing 19 angiosperm families and one gymnosperm family (as out group) using 390 orthologous genes. Our results strongly support the moving of Rhamnaceae to order Rosales from Rhamnales, abolishing Rhamnales, and establishing the new order Malpighiales in the APG III system. Our data also showed some characteristics inconsistent with the APG III classification and provided a reinterpretation of phylogeny for some of the families involved. We propose that Malpighiales should be placed in Malvids, not Fabids. The four monocot species representing four families were clustered together, indicating that monocot is a natural taxon. In summary, our results support almost all the APGIII treatments of the orders involved in this study and provided some surprising reinterpretations at levels beyond order.  相似文献   

20.
Chloroplast genome sequences are very useful for species identification and phylogenetics. Chuanminshen (Chuanminshen violaceum Sheh et Shan) is an important traditional Chinese medicinal plant, for which the phylogenetic position is still controversial. In this study, the complete chloroplast genome of Chuanminshen violaceum Sheh et Shan was determined. The total size of Chuanminshen chloroplast genome was 154,529 bp with 37.8% GC content. It has the typical quadripartite structure, a large single copy (17,800 bp) and a small single copy (84,171 bp) and a pair of inverted repeats (26,279 bp). The whole genome harbors 132 genes, which includes 85 protein coding genes, 37 tRNA genes, eight rRNA genes, and two pseudogenes. Thirty-nine SSR loci, 32 tandem repeats and 49 dispersed repeats were found. Phylogenetic analyses results with the help of MEGA showed a new insight for the Chuanminshen phylogenetic relationship with the reported chloroplast genomes in Apiales plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号