首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tannins in plant-herbivore interactions   总被引:2,自引:0,他引:2  
Tannins are the most abundant secondary metabolites made by plants, commonly ranging from 5% to 10% dry weight of tree leaves. Tannins can defend leaves against insect herbivores by deterrence and/or toxicity. Contrary to early theories, tannins have no effect on protein digestion in insect herbivores. By contrast, in vertebrate herbivores tannins can decrease protein digestion. Tannins are especially prone to oxidize in insects with high pH guts, forming semiquinone radicals and quinones, as well as other reactive oxygen species. Tannin toxicity in insects is thought to result from the production of high levels of reactive oxygen species. Tannin structure has an important effect on biochemical activity. Ellagitannins oxidize much more readily than do gallotannins, which are more oxidatively active than most condensed tannins. The ability of insects to tolerate ingested tannins comes from a variety of biochemical and physical defenses in their guts, including surfactants, high pH, antioxidants, and a protective peritrophic envelope that lines the midgut. Most work on the ecological roles of tannins has been correlative, e.g., searching for negative associations between tannins and insect performance. A greater emphasis on manipulative experiments that control tannin levels is required to make further progress on the defensive functions of tannins. Recent advances in the use of molecular methods has permitted the production of tannin-overproducing transgenic plants and a better understanding of tannin biosynthetic pathways. Many research areas remain in need of further work, including the effects of different tannin types on different types of insects (e.g., caterpillars, grasshoppers, sap-sucking insects).  相似文献   

2.
植物光合作用固定下来的能量沿食物链首先流向相邻营养级的植食性动物。植物-植食性动物相互关系是自然界中最普遍、最重要的一种种间关系, 是食物网理论的基础与核心。该文从植食性动物对植物个体、种群和群落特征的影响, 以及植物在个体、种群和群落3个水平上对植食性动物的防御机制与策略两方面, 综述了当前植物-植食性动物相互关系的研究进展。植食性动物的采食, 可以显著改变植物个体或种群的生长、繁殖和存活率, 植物种群的变化则进一步反馈于植物群落组成和多样性特征。相应地, 植物在个体、种群和群落水平形成了一系列的防御机制, 其中在个体和种群水平以化学与物理防御为主, 而群落水平则是通过影响动物的行为或天敌而实现的。该文对相关领域的重要假说和理论进行了介绍、比较。最后, 该文提出了植物-植食性动物相互关系研究的未来发展趋势。随着全球变化和人类活动对自然系统干扰的加剧, 在不同的时空尺度上探索这些干扰如何影响动植物关系, 以及这些影响如何反馈于生态系统的结构、功能和稳定性, 不但有重要的理论意义, 也将为未来制定合理的生态系统管理政策提供实际支撑。  相似文献   

3.
Theory suggests that environmental effects with transgenerational consequences, including rapid evolution and maternal effects, may affect the outcome of ecological interactions. However, indirect effects occur when interactions between two species are altered by the presence of a third species, and can make the consequences of transgenerational effects difficult to predict. We manipulated the presence of insect herbivores and the competitor Medicago polymorpha in replicated Lotus wrangelianus populations. After one generation, we used seeds from the surviving Lotus to initiate a reciprocal transplant experiment to measure how transgenerational effects altered ecological interactions between Lotus, Medicago, and insect herbivores. Herbivore leaf damage and Lotus fecundity were dependent on both parental and offspring environmental conditions. The presence of insect herbivores and Medicago in the parental environment resulted in transgenerational changes in herbivore resistance, but these effects were non-additive, likely as a result of indirect effects in the parental environment. Indirect transgenerational effects interacted with more immediate ecological indirect effects to affect Lotus fecundity. These results suggest that explanations of ecological patterns require an understanding of transgenerational effects and that these effects may be difficult to predict in species-rich, natural communities where indirect effects are prevalent.  相似文献   

4.
水分作为一种重要的环境因子,对陆地生物生长发育有着至关重要的作用。随着全球气候变暖,异常天气频发,水分胁迫也成为了影响农作物及其害虫生长发育的重要逆境胁迫。本文从水分胁迫对植食性昆虫的直接和间接影响进行阐述:从湿度、降雨量和土壤含水量角度讨论了水分胁迫对昆虫的直接影响;从水分影响植物和天敌角度,讨论了水分胁迫对植物-植食者性昆虫-天敌三营养阶层互作的间接影响,以期为理解农业害虫发生机制及其可持续治理决策提供研究信息和理论参考。  相似文献   

5.
We used sets of meta-analyses to review the evidence of sex-biased herbivory in dioecious plants as well as intersexual differences in plant characteristics that might affect herbivores. Thirtythree studies were reviewed to assess the effects of plant sex on herbivore abundance, survivorship and damage imposed to host plants, whereas 54 studies were reviewed for the effects of plant sex on plant morphological, physiological, and nutritional characteristics. The standardized mean difference between males and females was chosen as the measure to calculate effect sizes. Male plants exhibited significantly higher numbers of herbivores (d++=1.074) and significantly higher herbivory measured in terms of plant damage (d++=0.577) compared to female plants. Effects of plant sex on herbivore abundance were stronger for folivores and gallformers compared to the other guilds, whereas effects of plant sex on herbivore damage were stronger for flower predators compared to browsers and folivores. No difference in herbivore survivorship was observed between sexes. Male plants exhibited significantly more leaves (d++=0.202), larger leaves (d++=0.91), fewer flowers (d++=−0.89) and longer stems (d++=0.614) than female plants. Although male plants exhibited significantly lower concentrations of secondary compounds (d++=−0.209) and other defenses (d++=−0.53) than female plants, no difference in nutrient concentration, such as foliar nitrogen, was observed between sexes.  相似文献   

6.
7.
Nutrient limitation determines the primary production and species composition of many ecosystems. Here we apply an adaptive dynamics approach to investigate evolution of the ecological stoichiometry of primary producers and its implications for plant-herbivore interactions. The model predicts a trade-off between the competitive ability and grazing susceptibility of primary producers, driven by changes in their nutrient uptake rates. High nutrient uptake rates enhance the competitiveness of primary producers but also increase their nutritional quality for herbivores. This trade-off enables coexistence of nutrient exploiters and grazing avoiders. If herbivores are not selective, evolution favors runaway selection toward high nutrient uptake rates of the primary producers. However, if herbivores select nutritious food, the model predicts an evolutionarily stable strategy with lower nutrient uptake rates. When the model is parameterized for phytoplankton and zooplankton, the evolutionary dynamics result in plant-herbivore oscillations at ecological timescales, especially in environments with high nutrient availability and low selectivity of the herbivores. High herbivore selectivity stabilizes the community dynamics. These model predictions show that evolution permits nonequilibrium dynamics in plant-herbivore communities and shed new light on the evolutionary forces that shape the ecological stoichiometry of primary producers.  相似文献   

8.
Herbivores and pathogens often attack or infect the same plant parts, and the same plant traits can affect the likelihood and degree of damage. Research on plant-herbivore and plant-pathogen interactions in natural systems have, however, proceeded largely independently of each other. Our understanding of both types of plant-enemy interaction would be enhanced by greater exposure of researchers to developments in both disciplines and by more studies of interactions between pathogen and herbivore species associated with the same hosts.  相似文献   

9.
Cardenolides are remarkable steroidal toxins that have become model systems, critical in the development of theories for chemical ecology and coevolution. Because cardenolides inhibit the ubiquitous and essential animal enzyme Na?/K?-ATPase, most insects that feed on cardenolide-containing plants are highly specialized. With a huge diversity of chemical forms, these secondary metabolites are sporadically distributed across 12 botanical families, but dominate the Apocynaceae where they are found in > 30 genera. Studies over the past decade have demonstrated patterns in the distribution of cardenolides among plant organs, including all tissue types, and across broad geographic gradients within and across species. Cardenolide production has a genetic basis and is subject to natural selection by herbivores. In addition, there is strong evidence for phenotypic plasticity, with the biotic and abiotic environment predictably impacting cardenolide production. Mounting evidence indicates a high degree of specificity in herbivore-induced cardenolides in Asclepias. While herbivores of cardenolide-containing plants often sequester the toxins, are aposematic, and possess several physiological adaptations (including target site insensitivity), there is strong evidence that these specialists are nonetheless negatively impacted by cardenolides. While reviewing both the mechanisms and evolutionary ecology of cardenolide-mediated interactions, we advance novel hypotheses and suggest directions for future work.  相似文献   

10.
The -omics era has brought together two traditionally quite distinct disciplines in the study of plant-herbivore interactions: ecology and molecular biology. Microarrays, in particular, appeared to be the matchmakers between these, but proteomics and metabolomics also found roles to play. We show how they have dramatically enriched our appreciation of the massive metabolic reconfigurations that take place when herbivores eat plants and explain where they fall short in revealing how plants optimize the allocation of fitness-limiting resources among growth, defense, and tolerance responses while competing with other plants in nature. While the first offspring from this partnership between ecology and molecular biology searched for the 'master plan' of plant-herbivore interactions, the next generation now celebrates the diversity of outcomes that result from the co-evolutionary process.  相似文献   

11.
12.
We formulate a simple host-parasite type model to study the interaction of certain plants and herbivores. Our two-dimensional discrete-time model utilizes leaf and herbivore biomass as state variables. The parameter space consists of the growth rate of the host population and a parameter describing the damage inflicted by herbivores. We present insightful bifurcation diagrams in that parameter space. Bistability and a crisis of a strange attractor suggest two control strategies: reducing the population of the herbivore under some threshold or increasing the growth rate of the plant leaves.  相似文献   

13.
《CMAJ》1958,78(3):206
  相似文献   

14.
The role of indirect interactions in structuring communities is becoming increasingly recognised. Plant fungi can bring about changes in plant chemistry which may affect insect herbivores that share the same plant, and hence the two may interact indirectly. This study investigated the indirect effects of a fungal pathogen ( Marssonina betulae) of silver birch ( Betula pendula) on an aphid ( Euceraphis betulae), and the processes underpinning the interaction. There was a strong positive association between natural populations of the aphid and leaves bearing high fungal infection. In choice tests, significantly more aphids settled on leaves inoculated with the fungus than on asymptomatic leaves. Individual aphids reared on inoculated leaves were heavier, possessed longer hind tibiae and displayed enhanced embryo development compared with aphids reared on asymptomatic leaves; population growth rate was also positively correlated with fungal infection when groups of aphids were reared on inoculated branches. Changes in leaf chemistry were associated with fungal infection with inoculated leaves containing higher concentrations of free-amino acids. This may reflect a plant-initiated response to fungal attack in which free amino acids from the degradation of mesophyll cells are translocated out of infected leaves via the phloem. These changes in plant chemistry are similar to those occurring during leaf senescence, and are proposed as the mechanistic basis for the positive interaction between the fungus and aphid.  相似文献   

15.
Global environmental changes are hypothesized to affect herbivores indirectly via changes in plant defenses, and many studies have been conducted to explore effects of environmental change on plant chemistry and herbivory. We quantitatively synthesized data from these studies to produce generalities about the effects of a broad array of environmental changes on herbivores. Since conversion of natural habitat to agriculture has been one of the most profound environmental changes over the past century, the effects of global change variables on plant defense were also compared between natural and agricultural systems. We found evidence that increasing CO2, light availability, and nutrients all consistently increase herbivory, particularly by generalists. No significant differences in chemistry and herbivory response variables were found between natural and managed systems. Overall, these results are consistent with recent predictions of a disruption of natural trophic interactions with global change.  相似文献   

16.
Summary Experiments have demonstrated the possibility of analyzing for urea in geologic-type specimens by reflectance from paper-phase enzymatic color reactions. This serves as a plausible system that can be employed in the extraterrestrial search for evidence of biological or prebiological phenomena.  相似文献   

17.
18.
The apple twig borer (Amphicerus bicaudatus) is an insect pest of the grape vine, causing considerable damage to the grape vine in early spring. A simple difference equation model is formulated and analysed for this plant-herbivore system based on two control strategies, cane removal and pesticide application. The system has two equilibria, one where the pest is present and one where the pest is absent. Regions are found in parameter space for global stability of the equilibria and in the absence of global stability it is shown that there exist periodic or quasiperiodic solutions.  相似文献   

19.
Lambers  Hans 《Plant Ecology》1993,104(1):263-271
A brief account is given of the ecological significance of quantitatively important secondary plant compounds, mainly those of a phenolic nature, in herbivory and decomposition. Phenolic compounds accumulate to a greater extent in slow-growing species than in fast-growing ones, particularly when soil conditions (nutrients, water) restrict growth. Two hypotheses to explain the increased concentration of phenolics when soil conditions are unfavorable are presented. The first hypothesis (the carbon supply model of secondary plant metabolism) considers the increased levels of non-structural carbohydrates as the major trigger. The second hypothesis (the amino acid diversion model of secondary plant metabolism) states that increased accumulation of phenolics stems from a decreased use of a common precursor (phenylalanine or tyrosine) for protein synthesis. Current experimental evidence, though still fairly limited, supports the second hypothesis, but further testing is required before the first model can be rejected. So far, there is very little evidence for a direct effect of atmospheric CO2 on the concentration of secondary compounds in higher plants. However, there are likely to be indirect effects, due to a stronger limitation by the nitrogen supply in plants whose growth has been promoted by atmospheric CO2. It is concluded that it is very likely that phenolic compounds accumulate to a greater extent in plants exposed to elevated CO2, due to a greater limitation of nutrients, rather than as a direct effect of elevated CO2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号