首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
 Yield performance of each group of ten spring bread wheat lines selected by doubled haploid (DH), single-seed descent (SSD) and pedigree selection (PS) methods from three F1 crosses was compared with the aim of evaluating the DH method in breeding programs. Populations of 65–97 DH lines and 110 SSD lines per cross were used for selection. PS lines were developed by repeated selections from 1500 F2 plants. Yield evaluation was performed at the F6 generation of SSD and PS lines along with DH lines in a 2-year field experiment. It took only 2 years from the planting of wheat materials for DH production to the planting of selected DH lines for yield evaluation. There was no significant difference in grain yield between DH lines and PS lines selected from an F1 cross whose parental varieties were closely related in their pedigrees. In two crosses with low coefficients of parentage and a large variation in their progenies, grain yield of selected DH lines was significantly lower than those of selected SSD and PS lines. These results confirm that the DH method can save time in obtaining recombinant inbred lines ready for yield evaluation. However, a larger DH population is required to achieve the same level of genetic advance with the PS method in crosses containing greater genetic variation. Received: 23 December 1997 / Accepted: 12 March 1998  相似文献   

2.
Summary Both doubled haploid (DH) and single seed descent (SSD) methods were used to derive homozygous lines from two crosses of barley. The frequency distributions of grain yield, heading date, and plant height of the DH and SSD lines were compared by the Mann-Whitney U test, Kolmogorov-Smirnov twosample test and Wald-Wolfowitz runs test. It was found that the DH lines distributed in the same manner as the SSD lines with respect to the three characters. The results indicated that although the SSD method had more opportunity for recombination than the DH method, it did not produce a sample of recombinants which differed significantly from the DH sample; thus both methods were equally efficient for use in deriving homozygous lines from F1 hybrids in a relatively short time.Contribution no. 455 Charlottetown Research Station, Agriculture Canada, P.E.I. (Canada)  相似文献   

3.
4.
Samples of Fx inbred lines, derived by doubled haploidy (DH) and single seed descent (SSD) from five spring barley crosses were compared for agronomic characters. It was shown that, over this range of diverse crosses, inbreds derived by either technique could surpass the better parent or even the heterotic F1. The means of the DH and SSD were, however, different for a number of characters, as well as differing from the mid-parent value. It was concluded that these differences stemmed from the presence of interacting genes showing linkage disequilibrium, although there was no unambiguous test to distinguish this from differential survival during the production of inbreds. This view was further supported by the finding that the DH sample, which tends to preserve existing linkages, produced a higher proportion of lines exceeding the better scoring parent when compared with the SSD population.  相似文献   

5.
Summary The agronomic performance of 9 doubled haploid (DH) lines of Chinese Spring, 6 DH lines of Hope, 14 DH lines of the single chromosome substitution line Chinese Spring (Hope 5 A) and their respective parents was analyzed under field conditions. Seventeen Chinese Spring DH lines derived from wheat x Hordeum bulbosum crosses were also included for comparison. No significant variation was detected in either population of Chinese Spring DH lines and neither DH population differed from its parent. The Hope DH lines differed significantly for tiller biomass, spikelet number per ear, ear grain weight and 50-grain weight. However, all the variation could be attributed to the poor performance of only one line. Chinese Spring (Hope 5 A) DH lines showed significant variation for ear emergence time, but this was probably due to genetic heterogeneity in the parental stock. Overall, the results suggest that most DH lines produced by the wheat x maize method resemble their wheat parent, and that the variation induced in DH production is likely to be similar to that found in DHs from wheat x Hordeum bulbosum crosses.  相似文献   

6.
7.
The comparative efficiency of four selection methods, viz., honeycomb (HC), pedigree selection (PS), single-seed descent (SSD) and the bulk method (BM), was assessed in three crosses of mungbean. The lines derived by each method, along with check varieties, were yield-tested in a compact family block design in F5 and F6 generations during summer and kharif of 1990. On the basis of the mean of the lines, the range, the number of superior lines over the best check, and the proportion of the top 10% lines in all the crosses and generations, the honeycomb method exhibited superiority over PS, SSD and BM for yield per plant and its component traits. PS, SSD and BM did not differ from each other. The honeycomb and SSD methods were found suitable for deriving superior lines for seed yield and pods per plant in mungbean.  相似文献   

8.
Six doubled-haploid (DH) lines, derived by anther culture from octoploid triticale x wheat hybrids, were characterized using cytological, biochemical and molecular techniques. Lines varied in their wheat and rye genome composition, and were either wheat-rye chromosome multiple addition lines or had spontaneous substitutions and/or wheat-rye translocations. Most of the lines contained a pair of 4R chromosomes, whereas 1R or 7R were present in others. The results are similar to those previously obtained with hexaploid triticale x wheat crosses and indicate that it is possible to produce alien (wheat/rye) addition, substitution, and translocation lines directly from the anther culture of intergeneric hybrids.  相似文献   

9.
Anther culture was used to generate microspore-derived doubled haploid (DH) plants from four spring barley crosses. The culture medium used contained maltose as the sole carbohydrate source and the mode of plantlet regeneration was mainly via pollen embryogenesis. Both haploid and spontaneously doubled regenerants were produced and the doubled haploids were compared to recom-binant inbred lines generated by several rounds of selfing (single seed descent). Parental, DH and single seed descent (SSD) lines were grown in randomised, replicated field trials and the samples were scored for a range of agronomic traits. The mean performance and phenotypic distribution of the DH and SSD samples were similar and there was little evidence to support the conclusion that anther culture derived lines exhibit a reduction in vigour. Where significant differences were detected between groups these were mainly confined to crosses which were segregating for the denso dwarfing gene. The differential transmission of particular regions of the barley genome may therefore influence and confound the expression of agronomic traits in DH populations. This is the first report of the agronomic performance of anther culture lines produced via pollen embryogenesis and the results are discussed in relation to the exploitation of anther culture technology in barley breeding.  相似文献   

10.
The objective of this study was to produce durum wheat doubled haploid (DH) plants through the induction of microspore embryogenesis. The microspore culture technique was improved to maximize production of green plants per spike using three commercial cultivars. Studies on factors such as induction media composition, induction media support and the stage and growth of donor plants were carried out in order to develop an efficient protocol to regenerate green and fertile DH plants. Microspores were plated on a C17 induction culture medium with ovary co-culture and a supplement of glutathione plus glutamine; 300 g/l Ficoll Type-400 was incorporated to the induction medium support. Donor plants were fertilized with a combination of macro and microelements. With the cultivars ‘Ciccio’ and ‘Claudio’ an average of 36.5 and 148.5 fertile plants were produced, respectively, from 1,000 anthers inoculated. This technique was then used to produce fertile DH plants of potential agronomic interest from a collection of ten F1 crosses involving cultivars of high breeding value. From these crosses 849 green plants were obtained and seed was harvested from 702 plants indicating that 83% of green plants were fertile and therefore were spontaneously DHs. No aneuploid plant was obtained. The 702 plants yielded enough seeds to be field tested. One of the DH lines obtained by microspore embryogenesis, named ‘Lanuza’, has been sent to the Spanish Plant Variety Office for Registration by the Batlle Seed Company. This protocol can be used instead of the labor-intensive inter-generic crossing with maize as an economically feasible method to obtain DHs for most crosses involving the durum wheat cultivars grown in Spain.  相似文献   

11.
The androgenetic response of several selected male sterility-maintainer genotypes of triticale was investigated. Androgenesis induction was obtained in all cultivars, but a large genotypic variation in green plant regeneration was observed. The number of regenerated triticale plants varied from 0.1 to 4.7 green plants per spike, depending on genotype. Spontaneous doubling of chromosomes varied from 14 to 60% for particular genotypes and, on average, reached the value of 34% for all genotypes. Fertile DH lines obtained in this study will find practical application in the development of triticale male sterile lines that are desirable in hybrid breeding.  相似文献   

12.
 This study was intended to investigate the extent of genetic differentiation in parental lines of rice hybrids and to analyze the genetic basis underlying the fertility phenomenon in distant crosses. Two subsets of rice material (111 entries in total) were used, including 81 doubled-haploid (DH) lines and 30 Indica and Japonica rice varieties or lines (as a control). The DH lines was derived from a heterotic Indica/Japonica cross (Gui630/02428) by anther culture. The materials in the control represent a broad spectrum of the Asian cultivated rice gene pool including landraces, primitive cultivars, historically important cultivars, modern elite cultivars, super rice and parents of superior hybrids. In accordance with the NC II design, 57 out of the DH lines were test-crossed to two important wide compatibility lines: photoperiod-sensitive genetic male sterile (PGMS) line N422s and thermo-sensitive genetic male sterile (TGMS) line Peiai64s. The F1s and their parents, 182 entries in total, were examined for the performance of seven traits in a replicated field trial. All the rice materials was surveyed for polymorphisms using 92 RFLP markers selected from two published molecular marker linkage maps. Genotypes of the F1 hybrids at the molecular-marker loci were deduced from the parental genotypes. The analysis showed that there were two types of genetic differentiation in the two subsets of rice material; that is, qualitative differentiation in the control and quantitative differentiation in the DH lines. In addition, favorable genic interactions (both intra- or inter-locus) contributed to better increase the fertility in hybrids of distant crosses through incorporation of a wide-compatibility line as the female parent. Favorable genic interactions can be applied in hybrid rice breeding programs by selecting parents with an appropriate extent of genetic differentiation. Received: 5 June 1997 / Accepted: 10 September 1997  相似文献   

13.
Summary Ten Avena sterilis L. lines of Mediterranean origin were crossed with six A. sativa L. cultivars from the North Central USA. Additionally, six intervarietal crosses were made among the A. sativa cultivars. F2- derived lines from each cross type (interspecific and intraspecific) were evaluated for transgressive segregation for grain yield and several vigor traits. Mean percentages of transgressive segregates one LSD0.05 above the high parent for vegetative growth index and biomass were 9.0% and 9.8%, respectively, from interspecific crosses, but only 4.5% and 2.9%, respectively, from intraspecific crosses. However, there were two and a half times more high transgressive segregates for grain yield from intra than from interspecific crosses. The maximum vegetative growth index among segregates from interspecific crosses was 0.2 q/day/ha greater than the highest segregate from intraspecific crosses. However, mean harvest index was reduced materially by the introgression of A. sterilis germplasm. Because there was no genetic association between vegetative growth index and harvest index, however, it should be possible to improve both harvest index and vegetative growth index and, thus, the grain yield of cultivated oats.Journal Paper No. J-11228 of the Iowa Agric. and Home Econ. Exp. Stn., Ames, IA 50011. Project 2447  相似文献   

14.
The genetical control of F1 heterosis, observed in a cross of desirable Nicotiana tabacum varieties, was investigated by analysing the data of the basic generations, triple test cross-families and random samples of doubled haploids (DH) and single-seed descent (SSD) lines. Analyses of the first-degree statistics revealed a complex control underlying the genetic variation, including the presence of epistasis, linkage, maternal effects and their interactions, in addition to the additive and dominance effects of the genes segregating in the cross. These analyses identified gene dispersion, directional dominance, and duplicate epistasis, as the main causes of heterosis. The triple test-cross analysis also confirmed the presence of non-allelic interactions and indicated that the dominance ratio, although inflated by epistasis, is consistently partial for all the traits. The extent of transgression in the recombinant inbred lines finally established unequivocally that, as in numerous other crosses, gene dispersion and unidirectional, but partial, dominance are the true causes of heterosis in this cross too.  相似文献   

15.
In hybrid maize (Zea mays L.) breeding, doubled haploids (DH) are increasingly replacing inbreds developed by recurrent selfing. Doubled haploids may be developed directly from S0 plants in the parental cross or via S1 families. In both these breeding schemes, we examined 2 two-stage selecting strategies, i.e., considering or ignoring cross and family structure while selection among and within parental crosses and S1 families. We examined the optimum allocation of resources to maximize the selection gain ΔG and the probability P(q) of identifying the q% best genotypes. Our specific objectives were to (1) determine the optimum number and size of crosses and S1 families, as well as the optimum number of test environments and (2) identify the superior selection strategy. Selection was based on the evaluation of testcross progenies of (1) DH lines in both stages (DHTC) and (2) S1 families in the first stage and of DH lines within S1 families in the second stage (S1TC-DHTC) with uniform and variable sizes of crosses and S1 families. We developed and employed simulation programs for selection with variable sizes of crosses and S1 families within crosses. The breeding schemes and selection strategies showed similar relative efficiency for both optimization criteria ΔG and P (0.1%). As compared with DHTC, S1TC-DHTC had larger ΔG and P (0.1%), but a higher standard deviation of ΔG. The superiority of S1TC-DHTC was increased when the selection was done among all DH lines ignoring their cross and family structure and using variable sizes of crosses and S1 families. In DHTC, the best selection strategy was to ignore cross structures and use uniform size of crosses.  相似文献   

16.
Summary The identification of inbred lines useful for improvement of an elite single cross hybrid is an essential part of a pedigree maize (Zea mays L.) breeding program. The objectives of this study were to identify lines that could be useful for improvement of hybrid B73 × Mo17 and to relate the values of estimators of new favorable alleles with test cross yields. Crosses of parents of hybrid B73 × Mo17 with 10 public lines from the United States (US), and 14 Maize Research Institute Zemun Polje proprietary lines (lines per se, and test crosses from 3 F2 populations) were evaluated at 4 locations in Yugoslavia in 1986. Significant differences in grain yield were found among lines in minimally biased estimates of favorable alleles (G) present in a donor inbred but not present in a B73 × Mo17, in minimum upper bound (UBND) estimates and in predicted three-way performance (PTC). Twenty-one lines had a significant number of dominant favorable alleles for grain yield not present in B73 × Mo17. The highest values for all estimators of new favorable alleles were found for donor lines which belonged to different heterotic groups than the B73 and Mo17. For most of the inbreds, the (C + F) – (D + E) statistics agreed with predigree information. Simultaneous increases in grain yield and decreases in grain moisture content for B73 × Mo17 are possible with several donor inbred lines. All of the lines with a high number of new favorable alleles for grain yield not present in B73 × Mo17 had negative D (F)-G values for low plant height. Line N152 had the most new favorable alleles for grain yield not present in single cross B73 × Mo17. Population (N152 × Mo17) F2 had the highest difference of observed test cross means from check mean, the most test crosses with significantly higher yields than the check, and the largest estimate of number of segregating loci.This project was partly supported by the United States Department of Agriculture and Republic Funds for Scientific Work of Serbia through funds available to the United States-Yugoslav Joint Board on Scientific and Technological Cooperation. Project No. JFP 662  相似文献   

17.
Drought stress (DS) is one of the most critical environmental abiotic stresses for wheat production in the arid environments. Selection of high-yielding genotypes tolerant to DS can play a significant role in mitigation the negative impacts associated with DS. In the present study, generation means analysis (GMA) was used to study the performance of two crosses under well irrigation (WI) and deficit irrigation [cross I (Line 44 × Shandweel-1) and cross II (Line 20 × Sakha 93)]. Significant differences were observed for days to heading (DH), days to maturity (DM), plant height (PH), spike length (SL), number of spikes per plant (NS/P), number of grains per spike (NG/S), thousand-grain weight (TGW), grain yield per plant (GY/P), and proline content (PC) in the six populations of the two crosses within each irrigation level. Cross II had early maturity and the highest PC, NS/P, TGW, and GY/P regardless of the irrigation level. Cross I showed positive significant relative heterosis and heterobeltiosis for GY/P under the two irrigation levels. The inheritance of characters of cross I revealed additive, dominant, and epistatic effects, which varied with trait and stress. Additive genetic effects predominated in DH, SL, and PC, while non- additive were found in DM, NS/P, NG/S, and GY/P. Narrow-sense heritability estimates (h2n) were high for DH and PC, moderate to high for PH and SL, moderate for DM, NG/S, NS/P, and TGW, and low for GY/P. Based on different drought indices the populations BC1, BC2, F1, and P1 of cross II and BC1 of cross I were more tolerant to drought stress. Therefore, PC, TGW and DH can be used as selection indicators to improve wheat for drought tolerance in early generations and other yield components traits in late generations. The second cross (Line 20 × Sakha 93) shows promise and is of interest to a drought tolerance breeding program, where wheat breeders can use recombinant breeding strategies to construct desirable drought stress genes. Correlation and path coefficient revealed that TGW and PC were the main contributor in grain yield in both environments.  相似文献   

18.
To create a framework for genetic dissection of hexaploid triticale, six populations of doubled haploid (DH) lines were developed from pairwise hybrids of high-yielding winter triticale cultivars. The six populations comprise between 97 and 231 genotyped DH lines each, totaling 957 DH lines. A consensus genetic map spans 4593.9 cM is composed of 1576 unique DArT markers. The maps reveal several structural rearrangements in triticale genomes. In preliminary tests of the populations and maps, markers specific to wheat segments of the engineered rye chromosome 1R (RM1B) were identified. Example QTL mapping of days to heading in cv. Krakowiak revealed loci on chromosomes 2BL and 2R responsible for extended vernalization requirement, and candidate genes were identified. The material is available to all parties interested in triticale genetics.  相似文献   

19.
Summary Thirteen wheat-like advanced-generation triticale x wheat derivatives, having tetraploid wheat cytoplasm from triticale, were reciprocally crossed with three improved bread wheats, and the resulting F1s were evaluated for determining the comparative performance of the bread wheat and triticale cytoplasms for different traits. Significant reciprocal differences in the mean performance were observed for days to heading, days to maturity, spikes/plant, flag-leaf area, peduncle length, plant height, spike length, grains/spike, 1,000-grain weight, grain yield and grain protein content, and most of them were in favour of hexaploid wheat cytoplasm. However, this superiority of the hexaploid cytoplasm was not universal for a particular trait, implying that the differences in the performance of the evaluated reciprocal crosses depended not solely on the cytoplasmic background, but also on the interplay of the specific genotype with the cytoplasm.  相似文献   

20.
A quantitative trait loci (QTL) analysis for androgenetic capability has been conducted on three different crosses in maize, including very high and nonresponding lines for androgenesis. The doubled haploid lines derived by anther culture from the crosses DH5 x DH7, A188 x DH7, and R6 x DH99 showed a range of 0-70%, 0-40%, and 0-50% androgenetic responding anthers, respectively. The genotypic heritability of means for this trait is close to 0.90 for A188 x DH7 and 0.78 for R6 x DH99. The QTL analysis involved in each population the mapping of more than 100 loci covering a large part of the genome with reasonably spaced markers averaging 12 cM. Different measurements describing the androgenetic process were studied: AC, percentage of responding anthers; ELS, number of androgenetic embryos produced per 100 plated anthers; PLE, number of plantlets regenerated per 100 embryos; PLA, number of plantlets per 100 plated anthers. In each cross, three to four QTLs were found for AC, explaining 30-40% of the phenotypic variation. The QTL detected for PLA was also strong QTL for AC or ELS. This agrees with the observation that these last two traits are good predictors for final plantlet yield. The QTLs found were specific, although the same line DH7 was used in two crosses and DH99 derived from DH5 and DH7 in the third cross. These results suggest that the transfer of the androgenetic capabilities in elite germplasm will still involve a phenotypic evaluation of the androgenetic performances. A backcross-assisted selection based only on the genotype at the QTL is probably possible but only within the crosses used for this QTL analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号