首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The genes encoding xylose isomerase from Bacillus subtilis and Actinoplanes missouriensis have been isolated by complementation of a xylose isomerase defective Escherichia coli mutant. The xylose isomerase gene from A. missouriensis could be expressed in E. coli under the control of its own promoter, whereas the cloned Bacillus gene was expressed in E. coli only after the spontaneous integration of the E. coli IS5 element. After fusion of the Bacillus gene to the yeast PDC1 promoter, transformants of Saccharomyces cerevisiae contained the xylose isomerase protein. Approx. 5% of the total cellular protein of transformants consisted of xylose isomerase that was found to be at least partly insoluble. Neither the insoluble protein nor Triton X-114 solubilized isomerase was catalytically active. To investigate whether the xylose isomerase of A. missouriensis can be expressed in S. cerevisiae the coding region was fused to the yeast GAL1 promoter. Analysis of total RNA from yeast transformants containing this construction showed a xylose isomerase specific mRNA.Dedicated to Professor Karl Esser on the occasion of his 60th birthday  相似文献   

2.
Fan X  He X  Guo X  Qu N  Wang C  Zhang B 《Biotechnology letters》2004,26(5):415-417
A recombinant plasmid, pGMF, containing a gamma-glutamylcysteine synthetase gene (GSH-I) from Saccharomyces cerevisiae, was constructed with a copper-resistance gene as the selection marker and was introduced into S. cerevisiae YSF-31. The glutathione content of the recombinant strain was 1.5-fold (13.1 mg g dry cells(-1)) of that in the host strain.  相似文献   

3.
4.
2′-Fucosyllactose (2′-FL), a human milk oligosaccharide with confirmed benefits for infant health, is a promising infant formula ingredient. Although Escherichia coli, Saccharomyces cerevisiae, Corynebacterium glutamicum, and Bacillus subtilis have been engineered to produce 2′-FL, their titers and productivities need be improved for economic production. Glucose along with lactose have been used as substrates for producing 2′-FL, but accumulation of by-products due to overflow metabolism of glucose hampered efficient production of 2′-FL regardless of a host strain. To circumvent this problem, we used xylose, which is the second most abundant sugar in plant cell wall hydrolysates and is metabolized through oxidative metabolism, for the production of 2′-FL by engineered yeast. Specifically, we modified an engineered S. cerevisiae strain capable of assimilating xylose to produce 2′-FL from a mixture of xylose and lactose. First, a lactose transporter (Lac12) from Kluyveromyces lactis was introduced. Second, a heterologous 2′-FL biosynthetic pathway consisting of enzymes Gmd, WcaG, and WbgL from Escherichia coli was introduced. Third, we adjusted expression levels of the heterologous genes to maximize 2′-FL production. The resulting engineered yeast produced 25.5 g/L of 2′-FL with a volumetric productivity of 0.35 g/L∙h in a fed-batch fermentation with lactose and xylose feeding to mitigate the glucose repression. Interestingly, the major location of produced 2′-FL by the engineered yeast can be changed using different culture media. While 72% of the produced 2′-FL was secreted when a complex medium was used, 82% of the produced 2′-FL remained inside the cells when a minimal medium was used. As yeast extract is already used as food and animal feed ingredients, 2′-FL enriched yeast extract can be produced cost-effectively using the 2′-FL-accumulating yeast cells.  相似文献   

5.
Converting cellulosic biomass to ethanol involves the enzymatic hydrolysis of cellulose and the fermentation of the resulting glucose. The yeast Saccharomyces cerevisiae is naturally ethanologenic, but lacks the enzymes necessary to degrade cellulose to glucose. Towards the goal of engineering S. cerevisiae for hydrolysis of and ethanol production from cellulose, 35 fungal β-glucosidases (BGL) from the BGL1 and BGL5 families were screened for their ability to be functionally expressed and displayed on the cell surface. Activity assays revealed that the BGL families had different substrate specificities, with only the BGL1s displaying activity on their natural substrate, cellobiose. However, growth on cellobiose showed no correlation between the specific growth rates, the final cell titer, and the level of BGL1 activity that was expressed. One of the BGLs that expressed the highest levels of cellobiase activity, Aspergillus niger BGL1 (Anig-Bgl101), was then used for further studies directed at developing an efficient cellobiose-fermenting strain. Expressing Anig-Bgl101 from a plasmid yielded higher ethanol levels when secreted into the medium rather than anchored to the cell surface. In contrast, ethanol yields from anchored and secreted Anig-Bgl101 were comparable when integrated on the chromosome. Flow cytometry analysis revealed that chromosomal integration of Anig-Bgl101 resulted in a higher percentage of the cell population that displayed the enzyme but with overall lower expression levels.  相似文献   

6.
7.
Two inocula in different physiological states, namely in the exponential growth phase and in the declining phase were prepared from a strain of Saccharomyces cerevisiae. With these inocula were fermented musts from grapes of the Pedro Ximénez variety, sterilized by filtration. Cell growth and the activity of the enzymes alcohol dehydrogenase and aldehyde dehydrogenase [NADP+ and NAD(P)+] were found to vary with the state of the inoculum. This was reflected in the specific rate of production and, in some instances, in the final concentration of acetaldehyde, acetic acid, ethanol, isoamyl alcohols, phenethyl alcohol and their esters in the wine.  相似文献   

8.
The catalytic fraction of the Cellulomonas flavigena PN-120 oligomeric β-glucosidase (BGLA) was expressed both intra- and extracellularly in a recombinant diploid of Saccharomyces cerevisiae, under limited nutrient conditions. The recombinant enzyme (BGLA15) expressed in the supernatant of a rich medium showed 582 IU/L and 99.4 IU/g dry cell, with p-nitrophenyl-β-d-glucopyranoside as substrate. BGLA15 displayed activity against cello-oligosaccharides with 2–5 glucose monomers, demonstrating that the protein is not specific for cellobiose and that the oligomeric structure is not essential for β-d-1,4-bond hydrolysis. Native β-glucosidase is inhibited almost completely at 160 mM glucose, thus limiting cellobiose hydrolysis. At 200 mM glucose concentration, BGLA15 retained more than 50 % of its maximal activity, and even at 500 mM glucose concentration, more than 30 % of its activity was preserved. Due to these characteristics of BGLA15 activity, recombinant S. cerevisiae is able to utilize cellulosic materials (cello-oligosaccharides) to produce bioethanol.  相似文献   

9.
Genomic DNA and cDNA encoding the -amylase from the oomycete, Saprolegnia ferax, were cloned into Saccharomyces cerevisiae and analyzed. The Spl. ferax -amylase gene consisted of a 1350 bp open reading frame, encoding a protein of 450 amino acids with a calculated mass of 49353 Da, and was not interrupted by any intron. The deduced amino acid sequence of the -amylase gene had 42% similarity to the -amylase of Arabidopsis thaliana. The -amylase gene was expressed in Sacc. cerevisiae and its product was secreted into the culture medium.  相似文献   

10.
The expression of heterologous proteins may exert severe stress on the host cells at different levels. Protein folding and disulfide bond formation were identified as rate-limited steps in recombinant protein secretion in yeast cells. For the production of β-glucosidase in Pichia pastoris, final β-glucosidase activity reached 1,749 U/mL after fermentation optimization in a 3 L bioreactor, while the specific activity decreased from 620 to 467 U/mg, indicating a potential protein misfolding. To solve this problem, protein disulfide isomerase, a chaperone protein which may effectively regulate disulfide bond formation and protein folding, was co-expressed with β-glucosidase. In the co-expression system, a β-glucosidase production level of 2,553 U/mL was achieved and the specific activity of the enzyme reached 721 U/mg, which is 1.54 fold that of the control.  相似文献   

11.
Several alcohol dehydrogenase (ADH)-related genes have been identified as enzymes for reducing levels of toxic compounds, such as, furfural and/or 5-hydroxymethylfurfural (5-HMF), in hydrolysates of pretreated lignocelluloses. To date, overexpression of these ADH genes in yeast cells have aided ethanol production from glucose or glucose/xylose mixture in the presence of furfural or 5-HMF. However, the effects of these ADH isozymes on ethanol production from xylose as a sole carbon source remain uncertain. We showed that overexpression of mutant NADH-dependent ADH1 derived from TMB3000 strain in the recombinant Saccharomyces cerevisiae, into which xylose reductase (XR) and xylitol dehydrogenase (XDH) pathway of Pichia stipitis has been introduced, improved ethanol production from xylose as a sole carbon source in the presence of 5-HMF. Enhanced furan-reducing activity is able to regenerate NAD+ to relieve redox imbalance, resulting in increased ethanol yield arising from decreased xylitol accumulation. In addition, we found that overexpression of wild-type ADH1 prevented the more severe inhibitory effects of furfural in xylose fermentation as well as overexpression of TMB3000-derived mutant. After 120 h of fermentation, the recombinant strains overexpressing wild-type and mutant ADH1 completely consumed 50 g/L xylose in the presence of 40 mM furfural and most efficiently produced ethanol (15.70 g/L and 15.24 g/L) when compared with any other test conditions. This is the first report describing the improvement of ethanol production from xylose as the sole carbon source in the presence of furan derivatives with xylose-utilizing recombinant yeast strains via the overexpression of ADH-related genes.  相似文献   

12.
Adeno-associated viruses (AAV) are widely spread throughout the human population, yet no pathology has been associated with infection. This fact, together with the availability of simple molecular techniques to alter the packaged viral genome, has made AAV a serious contender in the search for an ideal gene therapy delivery vehicle. However, our understanding of the intriguing features of this virus is far from exhausted and it is likely that the mechanisms underlying the viral lifestyle will reveal possible novel strategies that can be employed in future clinical approaches. One such aspect is the unique approach AAV has evolved in order to establish latency. In the absence of a cellular milieu that will support productive viral replication, wild-type AAV can integrate its genome site specifically into a locus on human chromosome 19 (termed AAVS1), where it resides without apparent effects on the host cell until cellular conditions are changed by outside influences, such as adenovirus super-infection, which will lead to the rescue of the viral genome and productive replication. This article will introduce the biology of AAV, the unique viral strategy of targeted genome integration and address relevant questions within the context of attempts to establish therapeutic approaches that will utilize targeted gene addition to the human genome.  相似文献   

13.
AIDS is the result of a constant struggle between the lentivirus HIV and the immune system. Infection with HIV interferes directly with the function of CD4(+) T cells and manipulates the host immune response to the virus. Recent studies indicate that the viral protein Nef, a central player in HIV pathogenesis, impairs the ability of infected lymphocytes to form immunological synapses with antigen-presenting cells and affects T-cell-receptor-mediated stimulation. An integrative picture of the abnormal behaviour of HIV-infected lymphocytes is therefore emerging. We propose that modulating lymphocyte signalling, apoptosis and intracellular trafficking ensures efficient spread of the virus in the hostile environment of the immune system.  相似文献   

14.
15.
A random mutagenesis library of gp120-801 (a large segment of the envelope protein gene of HIV-1) was constructed using error-prone PCR and DNA shuffling methods, and one mutant of gp120-801 was selected from this library using a green fluorescent protein (GFP) fusion vector. After being cloned into pEX31b and expressed in E. coli, the expressed fusion protein reached to 15% of total bacterial proteins for the mutant but was just 1–2% for the wild type.  相似文献   

16.

Background  

Most proteins interact with only a few other proteins while a small number of proteins (hubs) have many interaction partners. Hub proteins and non-hub proteins differ in several respects; however, understanding is not complete about what properties characterize the hubs and set them apart from proteins of low connectivity. Therefore, we have investigated what differentiates hubs from non-hubs and static hubs (party hubs) from dynamic hubs (date hubs) in the protein-protein interaction network of Saccharomyces cerevisiae.  相似文献   

17.
In contrast to the previously held notion that nitrogen catabolite repression is primarily responsible for the ability of yeast cells to use good nitrogen sources in preference to poor ones, we demonstrate that this ability is probably the result of other control mechanisms, such as metabolite compartmentation. We suggest that nitrogen repression is functionally a long-term adaptation to changes in the nutritional environment of yeast cells.  相似文献   

18.
Duguez S  Bartoli M  Richard I 《The FEBS journal》2006,273(15):3427-3436
Calpain 3 is a 94-kDa calcium-dependent cysteine protease mainly expressed in skeletal muscle. In this tissue, it localizes at several regions of the sarcomere through binding to the giant protein, titin. Loss-of-function mutations in the calpain 3 gene have been associated with limb-girdle muscular dystrophy type 2A (LGMD2A), a common form of muscular dystrophy found world wide. Recently, significant progress has been made in understanding the mode of regulation and the possible function of calpain 3 in muscle. It is now well accepted that it has an unusual zymogenic activation and that cytoskeletal proteins are one class of its substrates. Through the absence of cleavage of these substrates, calpain 3 deficiency leads to abnormal sarcomeres, impairment of muscle contractile capacity, and death of the muscle fibers. These data indicate a role for calpain 3 as a chef d'orchestre in sarcomere remodeling and suggest a new category of LGMD2 pathological mechanisms.  相似文献   

19.
20.
To obtain more information about the cell wall organization of Saccharomyces cerevisiae, we have developed a novel screening system to obtain cell wall-defective mutants, using a density gradient centrifugation method. Nine hypo-osmolarity-sensitive mutants were classified into two complementation groups, hpo1 and hpo2. Phase contrast microscopic observation showed that mutant cells bearing lesions at either locus became abnormally large. A gene that complemented the mutant phenotype of hpo2 was cloned and sequenced. This gene turned out to be identical to PKC1, which encodes the yeast homologue of mammalian protein kinase C. Complementation tests with pkc1Δ showed that hpo2 is allelic to pkc1. To study the reason for the fragility of hpo2 cells, cell wall was isolated and the glucan was analyzed. The amount of alkali, acid-insoluble glucan, which is responsible for the rigidity of the cell wall, was reduced to about 30% that of the wild-type cell and this may be the major cause of the fragility of the hpo2 mutant cell. Analysis of total wall proteins in hpo2 mutant cells on SDS-polyacrylamide gels revealed that a 33 kDa protein was overproduced two- to threefold relative to the wild-type level. This 33 kDa protein was identified as a β-glucanase, encoded by BGL2. Disruption of BGL2 in the hpo2 mutant partially rescued the growth rate defect. This suggests that the PKC1 kinase cascade regulates BGL2 expression negatively and overproduction of the β-glucanase is partially responsible for the growth defect. Since the bgl2 disruption did not rescue the hypo-osmolarty-sensitive phenotype of the hpo2 mutant, PKC1 must negatively regulate other enzymes involved in the biosynthesis and metabolism of the cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号