首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Organization of minicircle genes for guide RNAs in Trypanosoma brucei   总被引:23,自引:0,他引:23  
  相似文献   

3.
4.
N R Sturm  L Simpson 《Cell》1990,61(5):879-884
Guide RNAs (gRNAs) for the editing of sites 1-8 of COIII mRNA and an "unexpected" partially edited COIII mRNA are encoded in the variable regions of specific kinetoplast DNA minicircles. The gRNAs can form 37 and 44 nucleotide perfect hybrids (allowing for G-U base pairs) with edited mRNAs. The gRNAs were detected on Northern blots and shown to have unique 5' ends situated close to the beginning of the potential base pairing with the edited mRNAs. We suggest that kinetoplast DNA minicircle molecules in general may encode gRNAs for editing of cryptogene mRNAs by a mechanism similar to that previously proposed for editing by maxicircle-encoded gRNAs.  相似文献   

5.
M E Harris  S L Hajduk 《Cell》1992,68(6):1091-1099
RNA editing in the kinetoplastid Trypanosoma brucei results in the addition and deletion of uridine residues within several mitochondrial mRNAs. The site and number of uridines added appears to be directed by small (approximately 70 nt) guide RNAs (gRNAs), which can base pair to the edited sequences. We examined reactions involving synthetic cytochrome b (CYb) gRNA and pre-edited mRNA in vitro. A major product of the in vitro reaction is a chimeric RNA molecule containing both gRNA and mRNA sequences. Formation of the CYb gRNA-mRNA chimera was specific, since such molecules did not accumulate when either the gRNA or mRNA was substituted with control RNAs. The reaction required a free 3' hydroxyl on the gRNA and was unaffected by capping of the gRNA's 5' end. Direct RNA sequencing indicated that the CYb gRNA is covalently linked via its 3' poly(U) tail to one of the editing sites on the CYb mRNA. These results suggest that the U's added during editing are donated by the poly(U) tail of a gRNA via a chimeric gRNA-mRNA intermediate.  相似文献   

6.
D A Maslov  L Simpson 《Cell》1992,70(3):459-467
Seventeen kinetoplast minicircle-encoded and nine maxicircle-encoded gRNA genes have been identified. Six overlapping minicircle-encoded gRNAs mediate editing for the 5'-pan-edited MURF4 gene and two for the 5'-edited COIII gene. The pan-edited RPS12 mRNA is edited by seven minicircle-encoded gRNAs and one maxicircle-encoded gRNA. The 3'-most gRNA in each domain forms an anchor with unedited mRNA, whereas upstream gRNAs form anchors only with edited mRNA, thereby explaining the observed 3' to 5' polarity of editing within an editing domain. We suggest that a role of G-U base pairs is to allow breathing of the edited mRNA-gRNA hybrid and formation of the upstream anchor hybrid.  相似文献   

7.
8.
J E Feagin  J M Abraham  K Stuart 《Cell》1988,53(3):413-422
  相似文献   

9.
The coding sequence of several mitochondrial mRNAs of the kinetoplastid protozoa is created only after the addition or deletion of specific uridines. Although in vitro systems have been valuable in characterizing the editing mechanism, only a limited number of mRNAs are accurately edited in vitro. We demonstrate here that in vitro editing of cytochrome b mRNA is inhibited by an A-U sequence present on both the 5'-untranslated sequence and on a cytochrome b guide RNA. Mutation of the sequence on the guide RNA stimulates directed editing and results in the loss of binding to at least one component within the editing extract. Mutation of the sequence on the mRNA increases the accuracy of the editing. Evidence is provided that suggests the A-U sequence interacts with the editing machinery both in vitro and in vivo.  相似文献   

10.
Trypanosomes use RNA editing to produce most functional mitochondrial messenger RNA. Precise insertion and deletion of hundreds of uridines is necessary to make full-length cytochrome c oxidase III (COXIII) mRNA. We show that COXIII mRNA can be alternatively edited by a mechanism using an alternative guide RNA to make a stable mRNA. This alternatively edited mRNA is translated to produce a unique protein that fractionates with mitochondrial membranes and colocalizes with mitochondrial proteins in situ. Alternative RNA editing represents a previously unknown mechanism generating protein diversity and, as such, represents an important function for RNA editing.  相似文献   

11.
Mitochondrial gene expression in trypanosomes is controlled primarily at the levels of RNA processing and RNA stability. This regulation undoubtedly involves numerous ribonucleases. Here we characterize the Trypanosoma brucei homolog of the yeast DSS-1 mitochondrial exoribonuclease, which we term TbDSS-1. Biochemical fractionation indicates that TbDSS-1 is mitochondrially localized, as predicted by its N-terminal sequence. In contrast to its yeast homolog, TbDSS-1 does not appear to be associated with mitochondrial ribosomes. Targeted downregulation of TbDSS-1 by RNA interference in procyclic-form T. brucei results in a severe growth defect. In addition, TbDSS-1 depletion leads to a decrease in the levels of never edited cytochrome oxidase subunit I (COI) mRNA and both unedited and edited COIII mRNAs, indicating this enzyme functions in the control of mitochondrial RNA abundance. We also observe a considerable reduction in the level of edited apocytochrome b (CYb) mRNA and a corresponding increase in unedited CYb mRNA, suggesting that TbDSS-1 functions, either directly or indirectly, in the control of RNA editing. The abundance of both gCYb[560] and gA6[149] guide RNAs is reduced upon TbDSS-1 depletion, although the reduction in gCYb[560] is much more dramatic. The significant reduction in gCYb levels could potentially account for the observed decrease in CYb RNA editing. Western blot analyses of mitochondrial RNA editing and stability factors indicate that the perturbations of RNA levels observed in TbDSS-1 knock-downs do not result from secondary effects on other mitochondrial proteins. In all, these data demonstrate that TbDSS-1 is an essential protein that plays a role in mitochondrial RNA stability and RNA editing.  相似文献   

12.
13.
14.
B Blum  N R Sturm  A M Simpson  L Simpson 《Cell》1991,65(4):543-550
Chimeric RNA molecules were detected by polymerase chain reaction amplification of kinetoplast RNA using a 3' primer specific to mRNA and a 5' primer specific to guide RNA (gRNA), and directly by Northern analysis. Covalent linkage of the 3' oligo(U) tail of the gRNA to the mRNA occurs at editing sites. Chimeric molecules were isolated for NADH dehydrogenase subunit 7 and cytochrome oxidase subunits II and III. We propose that these molecules are intermediates in the editing process and that successive transesterifications result in the transfer of uridine residues from the gRNA 3' oligo(U) tail to an editing site, with the number of uridine residues determined by base pairing with adenine and guanine "guide" nucleotides in the gRNA.  相似文献   

15.
16.
Small guide RNAs (gRNAs) may direct RNA editing in kinetoplastid mitochondria. We have characterized multiple gRNA genes from Trypanosoma brucei (EATRO 164), that can specify up to 30% of the editing of the COIII, ND7, ND8, and A6 mRNAs and we have also found that the non-translated region of edited COIII mRNA of strain (EATRO 164) differs from that of another strain. Several of the gRNAs specify overlapping regions of the same mRNA often specifying sequence beyond that required for an anchor duplex with the next gRNA. Some gRNAs have different sequence but specify identical editing of the same region of mRNA. These data indicate a complex gRNA population and consequent complex pattern of editing in T. brucei.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号