首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the initial field evaluation of transgenic plants, it is usual to isolate them genetically from other plants of the same species. Several field experiments on potatoes, using transgenes as markers, have shown that transgene dispersal by pollen to other potato plants is limited and very unlikely at distances over 10 m. In a recent study in Sweden, a frequency of transgene-containing progeny of over 30% is reported from non-transgenic potato plants grown at distances of 10–1000 m from transgenic plants containing nptII and gus marker genes. Data from the Swedish study is discussed along with other relevant observations, and it is concluded that the high frequency of gene dispersal in that study results from a high frequency of false positives during PCR analysis of the nptII gene. From the data available in potato, it is concluded that a distance of 20 m is generally adequate for the initial field evaluation of transgenic potatoes containing novel gene constructs.  相似文献   

2.
Our previous studies have shown that tCUP, a cryptic promoter from tobacco, functions in all living plant cell types in a wide range of plant species. This led us to investigate if an enhanced derivative, EntCUP(, could be used to drive the neomycin phosphotransferase II (nptII) gene and select for kanamycin resistance in crop species that regenerate by organogenesis or embryogenesis. Tobacco (leaves), cauliflower (hypocotyls) and alfalfa (leaves, petioles, stems) explants were co-cultivated with Agrobacterium containing either EntCUP(-nptII-nos or 35S-nptII-nos to compare the efficiency of selection for kanamycin resistance. The infected alfalfa explants were placed in somatic embryo induction media, whereas tobacco and cauliflower explants were placed in shoot induction media with kanamycin at concentrations that normally inhibit regeneration. Transgenic plants were recovered from all of the explants with both selectable marker gene constructs. The transformation efficiencies using tCUP(-nptII-nos were comparable to or higher than those using 35S-nptII-nos in all three species tested. This study demonstrated that promoters which are not associated with expressed plant genes can be used as alternatives for the expression of selectable marker genes in a broad range of tissues and species for the generation of transgenic plants.  相似文献   

3.
Transgenic potato plants with the nptII gene coding for neomycin phosphotransferase (kanamycin resistance) as a selection marker were examined for the spread of recombinant DNA into the environment. We used the recombinant fusion of nptII with the tg4 terminator for a novel biomonitoring technique. This depended on natural transformation of Acinetobacter sp. strain BD413 cells having in their genomes a terminally truncated nptII gene (nptII′; kanamycin sensitivity) followed by the tg4 terminator. Integration of the recombinant fusion DNA by homologous recombination in nptII′ and tg4 restored nptII, leading to kanamycin-resistant transformants. DNA of the transgenic potato was detectable with high sensitivity, while no transformants were obtained with the DNA of other transgenic plants harboring nptII in different genetic contexts. The recombinant DNA was frequently found in rhizosphere extracts of transgenic potato plants from field plots. In a series of field plot and greenhouse experiments we identified two sources of this DNA: spread by roots during plant growth and by pollen during flowering. Both sources also contributed to the spread of the transgene into the rhizospheres of nontransgenic plants in the vicinity. The longest persistence of transforming DNA in field soil was observed with soil from a potato field in 1997 sampled in the following year in April and then stored moist at 4°C in the dark for 4 years prior to extract preparation and transformation. In this study natural transformation is used as a reliable laboratory technique to detect recombinant DNA but is not used for monitoring horizontal gene transfer in the environment.  相似文献   

4.
Internodes, leaves and tuber slices from potato (Solanum tuberosum), genotype 1024-2, were subjected to particle bombardment. Transient expression was optimized using the uidA and the luc reporter genes that encode #-glucuronidase (GUS) and luciferase, respectively. Stable transformation was achieved using the neomycin phosphotransferase (nptII) gene, which confers resistance to the antibiotic kanamycin. The influence of biological parameters (tissue type, growth period before bombardment, pre- and post-bombardment osmoticum treatment) and physical parameters (helium pressure, tissue distance) that are known to possibly affect stable transformation were investigated. Putative transgenic plants, which rooted in media containing kanamycin, were obtained from all of the tissues tested although there were large differences in the efficiency: internodes (0.77 plants per bombarded explant), microtuber slices (0.10 plants per bombarded explant) and leaves (0.02 plants per bombarded explant). Southern blot analysis of putative transgenic plants confirmed the integration of the transgenes into plant DNA. The results indicate that an efficient particle bombardment protocol is now available for both transient and stable transformation of potato internodal segments, thus contributing to an enhanced flexibility in the delivery of transgenes to this important food crop.  相似文献   

5.
A tobacco microsomal P-3 fatty acid desaturase gene (NtFAD3) under the control of the CaMV 35S promoter or an improved CaMV 35S promoter (El2Q) was introduced into sweet potato. Transformed sweet potato plants were obtained from embryogenic calli following Agrobacterium tumefaciens-mediated transformation. The transgenic plants grew normally to form storage roots and showed properties similar to those of the non-transgenic plants. The fatty acid composition in the transgenic line with a NtFAD3 gene driven by the CaMV 35S promoter was similar to that in the non-transformant. However, in the transgenic line that had a NtFAD3 gene driven by the El2Q promoter, linoleic acid (18:2) and linolenic acid (18:3) contents were 47.7 mol% and 24.8 mol%, respectively, which were significantly different from the 53.6 mol% and 11.3 mol%, respectively, in the non-transformant. The NtFAD3 gene driven by the El2Q promoter was expressed more strongly than that driven by the CaMV 35S promoter, thereby increasing the linolenic acid content in the transgenic sweet potato plants.  相似文献   

6.
7.
 Results are reported on the integration sites and copy number of alien marker genes neomycin phosphotransferase II (nptII) and β-glucuronidase (uidA), introduced into diploid potato Solanum tuberosum through transformation by Agrobacterium tumefaciens. Also, the transgenic potato chromosomes 3 and 5 harbouring the nptII and uidA genes, which were transferred to tomato (wild species Lycopersicon peruvianum) by microprotoplast fusion, as revealed by genomic in situ hybridization (GISH), were identified by RFLP analysis using chromosome-specific markers. The data revealed three integration sites in the donor potato genome, each containing the uidA gene, and two also harbouring the nptII gene. Analysis of monosomic-addition hybrid plants obtained after microprotoplast fusion showed that each of these three integration sites is located on a different potato chromosome. The microprotoplast hybrid plants contained only the chromosomes that carried the selectable gene nptII. The data on sexual transmission of the donor potato chromosome carrying the uidA and nptII genes were obtained by analysing the first backcross progeny (BC1) derived from crossing a monosomic-addition hybrid plant to tomato (L. peruvianum). The glucuronidase (GUS) assay and PCR analysis using primers for the uidA gene indicated the presence of the potato chromosome in GUS-positive and its absence in GUS-negative BC1 plants. RFLP analysis confirmed sexual transmission of the potato chromosome carrying the nptII and uidA genes to the BC1 plants. A few BC1 plants contained the nptII and uidA genes in the absence of the potato additional chromosome, indicating that the marker genes were integrated into the tomato genome. The potential applications of the transfer of alien chromosomes and genes by microprotoplast fusion technique are discussed. Recieved: 1 September 1996 / Accepted: 20 September 1996  相似文献   

8.
A transformation system for Campanula glomerata 'Acaulis' based on the co-cultivation of leaf explants with Agrobacterium tumefaciens LBA4404 or EHA105 was developed. A. tumefaciens was eliminated when the explants were cultured on medium containing 400 mg/l vancomycin and 100 mg/l cefotaxime. Transgenic plants containing the uidA gene that codes for #-glucuronidase (gus) were obtained following co-cultivation with either strain of A. tumefaciens, LBA4404 or EHA105, both of which harbored the binary vector pGUSINT, coding for the uidA and neomycin phosphotransferase II (nptII) genes. While the transformation frequency (2-3%) was similar for both strains, A. tumefaciens LBA4404 was effectively eliminated from Campanula at a lower concentration of antibiotic as compared to EHA105. The concentration of individual antibiotics required to eliminate EHA105 resulted in a decreased rate (55-67%) of regeneration. The highest percentage of explants that regenerated plants (79%) and the highest regeneration rate was achieved with 100 mg/l cefotaxime combined with 400 mg/l vancomycin. Plants were also transformed with the isopentenyl transferase (ipt) gene using LBA4404 containing the 35S-ipt vector construct (pBC34).  相似文献   

9.
The full-length sense cDNA for sweet potato granule-bound starch synthase I (GBSSI) driven by the CaMV 35S promoter was introduced into the sweet potato by Agrobacterium tumefaciens-mediated transformation. Out of the 26 transgenic plants obtained, one plant showed the absence of amylose in the tuberous root as determined by the iodine colorimetric method. Electrophoresis analysis failed to detect the GBSSI protein, suggesting that gene silencing of the GBSSI gene occurred in the transgenic sweet potato plant. These results demonstrate that starch composition in the tuberous root of sweet potato can be altered by genetic transformation.  相似文献   

10.
We have developed a novel system for the sensitive detection of nptII genes (kanamycin resistance determinants) including those present in transgenic plant genomes. The assay is based on the recombinational repair of an nptII gene with an internal 10-bp deletion located on a plasmid downstream of a bacterial promoter. Uptake of an nptII gene by transformation restores kanamycin resistance. In Escherichia coli, promoterless nptII genes provided by electroporation were rescued with high efficiency in a RecA-dependent recombinational process. For the rescue of nptII genes present in chromosomal plant DNA, the system was adapted to natural transformation, which favours the uptake of linear DNA. When competent Acinetobacter sp. BD413 (formerly A. calcoaceticus) cells containing the mutant nptII gene on a plasmid were transformed with DNA from various transgenic plants carrying nptII as a marker gene (Solanum tuberosum, Nicotiana tabacum, Beta vulgaris, Brassica napus, Lycopersicon esculentum), kanamycin-resistant transformants were obtained roughly in proportion to the concentration of nptII genes in the plant DNA. The rescue of nptII genes occurred in the presence of a more than 6?×?106-fold excess of plant DNA. Only 18 ng of potato DNA (2.5?×?103 genome equivalents, each with one copy of nptII) was required to produce one kanamycin-resistant transformant. These experiments and others employing DNA isolated from soil samples demonstrate that the system allows reliable and highly sensitive monitoring of nptII genes in transgenic plant DNA and in DNA from environmental sources, such as soil, without the need for prior DNA amplification (e.g. by PCR).  相似文献   

11.
Genetic transformation with resistance (R) genes is expected to enhance resistance durability against pathogens, especially for potato, a vegetatively propagated crop with tetrasomic inheritance and a long-term breeding program. In this study, 128 potato transformants were analysed for the presence of vector T-DNA genes, borders and backbone sequences. They were harvested after transformation using a construct containing neomycin phosphotransferase II (nptII) and three R genes against potato late blight (Phytophthora infestans). Our analysis revealed that 45 % of the R gene-containing transformants possessed a low T-DNA copy number, without the integration of vector backbone and borders. The integration of vector backbone sequences was characterized using eight genes, and backbone gene tetA was selected for the early prediction of plants with backbone sequence integration. Three transformants, two plants harbouring one T-DNA copy and one plant harbouring three T-DNA copies, were crossed with susceptible cv. Katahdin. Based on our results, we conclude that all four T-DNA genes were inherited as one cluster and segregated in a Mendelian fashion. The three T-DNA inserts from the transformant harbouring three T-DNA copies were statistically proven to be un-linked and inherited into the offspring plants independently. All of the R genes were functionally expressed in the offspring plants as in their parental transformants. This functional gene stacking has important implications towards achieving more durable resistance against potato late blight.  相似文献   

12.
Summary Efficient methods ofAgrobacterium-mediated transformation are described for two Pacific Northwest cultivars of strawberry (Fragaria ×ananassa), Tristar and Totem. We report stable incorporation of a gene for control of ethylene biosynthesis, into strawberry (cultivar Totem) for the first time. Cultivar Tristar was transformed with disarmed strains ofAgrobacterium tumefaciens (A. tumefaciens), LBA4404 or EHA101, containing a binary vector with marker genesuidA andnptII. Cultivar Totem was transformed withA. tumefaciens strains EHA101 or EHA105 harboring binary vectors with selectable marker genesnptII orhpt and with a gene for S-adenosylmethionine hydrolase (SAMase) for control of ethylene biosynthesis. The frequency of transgenic shoots ranged from 12.5% to 58.8% of the original treated explants when using plasmids containing the gene encoding SAMase. Primary shoot regenerants obtained on selection medium were subjected to several iterations of tissue isolation and reculture on higher stringency selection medium for recovering uniformly transformed plantlets. Transgenic plants were confirmed by their ability to undergo rooting on medium with selection at 60 mg/liter kanamycin or 10 mg/liter hygromycin. About 95–100% of the transformation events from different experiments were capable of profuse rooting in the presence of selection. Insertion of the SAMase gene and its integration into the strawberry genome were confirmed by Southern hybridization. About 500 plants from 250 independent transgenic events have been successfully transferred to soil for further evaluation.  相似文献   

13.
A system for the production of transgenic plants has been developed for the Liliaceous ornamental plant Muscari armeniacum Leichtl. ex Bak via Agrobacterium-mediated transformation of embryogenic cultures. Leaf-derived embryogenic cultures were co-cultivated with each of three A. tumefaciens strains, all of which harbored the binary vector carrying the neomycin phosphotransferase II (nptII), hygromycin phosphotransferase (hpt) and intron-containing #-glucuronidase (gus-intron) genes in the T-DNA region. Following co-cultivation, the embryogenic cultures were cultured on a medium containing 500 mg l-1 cefotaxime for 1 week followed by a medium containing 75 mg l-1 hygromycin in addition to cefotaxime. After 4-5 weeks, several hygromycin-resistant (Hygr) cell clusters were produced from the co-cultivated embryogenic cultures. The highest efficiency of production of Hygr cell clusters was obtained when embryogenic cultures were inoculated with A. tumefaciens EHA101/pIG121Hm in the presence of 100 µM acetosyringone (AS) and 0.1% (v/v) of a surfactant (Tween20) followed by co-cultivation in the presence of 100 µM AS. Hygr embryogenic cultures developed into complete plants via somatic embryogenesis, and most of them were verified to be transgenic by GUS histochemical assay and polymerase chain reaction analysis. Southern blot analysis revealed the integration of one to five copies of the transgene into the genome of transgenic plants, but most of them had one or two copies.  相似文献   

14.
A biolistic transformation procedure was applied to co-transform embryogenic tissue of Pinus radiata and Picea abies with two plasmid DNAs. The first vector contained the bar gene, specifying resistance to the herbicide glufosinate, under the control of the maize ubiquitin promoter. This plasmid also contained the Pinus radiata germin cDNA sequence, in either sense or antisense orientation, driven by the ubiquitin promoter. The second vector contained both the nptII gene under control of the CaMV 35S promoter for selection of transgenic tissue on geneticin and the uidA reporter gene under control of the double CaMV 35 promoter. Polymerase chain reaction analysis of selected geneticin-resistant tissue showed that the transformation rates for the co-bombarded plasmid were high in both Pinus radiata (75%) and Picea abies (86%). A combination of phenotypic analysis and Northern hybridisation demonstrated that a number of the transgenic lines expressed all four transgenes. Regenerated plantlets from Pinus radiata and Picea abies transgenic lines were spray-tested with commercial rates of Buster (glufosinate at 0.5, 1.0, 2.0 and 4.0 kg active ingredient per hectare). Transgenic plants survived and continued to grow with minor or no damage to their needles, whereas non-transgenic plants regenerated from the same cell lines died within 8 weeks of spraying. To our knowledge, this is the first report on genetically engineered herbicide resistance in conifers, and the results demonstrate that this trait is a feasible option for plantation forestry.  相似文献   

15.
Potato leafroll poleovirus and the Colorado potato beetle (Leptinotarsa decemlineata (Say)) are major pests of potato in the USA. The US Department of Agriculture estimates that over 50% of annual insecticide use on potato is applied to control the Colorado potato beetle and aphids that transmit potato leafroll virus (PLRV). To address this issue, Russet Burbank potatoes have been genetically modified for a high level of resistance to infection and the resulting disease symptoms caused by PLRV and to feeding damage caused by the Colorado potato beetle. This resistance was achieved by the expression of the unmodified full-length replicase gene of PLRV and the cry3A insect control protein gene from Bacillus thuringiensis var. tenebrionis. Plant expression constructs containing various modifications of the PLRV replicase gene were produced during the development of this product. The genes in these constructs were a full-length unmodified replicase (open reading frame 2a/2b), an antisense orientation of the full-length cDNA, an open reading frame 1 translation of the full-length gene, and a gene truncation containing the 3 sense coding portion of the replicase gene. Growth chamber experiments demonstrated that transformation of plants with the full-length and 3 sense coding constructs substantially protected these potato plants from infection and disease symptoms caused by PLRV. The Russet Burbank potato expressing the full-length PLV replicase gene and the cry3A gene is a new potato product from NatureMark called NewLeaf Plus®.  相似文献   

16.
We have developed a novel system for the sensitive detection of nptII genes (kanamycin resistance determinants) including those present in transgenic plant genomes. The assay is based on the recombinational repair of an nptII gene with an internal 10-bp deletion located on a plasmid downstream of a bacterial promoter. Uptake of an nptII gene by transformation restores kanamycin resistance. In Escherichia coli, promoterless nptII genes provided by electroporation were rescued with high efficiency in a RecA-dependent recombinational process. For the rescue of nptII genes present in chromosomal plant DNA, the system was adapted to natural transformation, which favours the uptake of linear DNA. When competent Acinetobacter sp. BD413 (formerly A. calcoaceticus) cells containing the mutant nptII gene on a plasmid were transformed with DNA from various transgenic plants carrying nptII as a marker gene (Solanum tuberosum, Nicotiana tabacum, Beta vulgaris, Brassica napus, Lycopersicon esculentum), kanamycin-resistant transformants were obtained roughly in proportion to the concentration of nptII genes in the plant DNA. The rescue of nptII genes occurred in the presence of a more than 6 × 106-fold excess of plant DNA. Only 18 ng of potato DNA (2.5 × 103 genome equivalents, each with one copy of nptII) was required to produce one kanamycin-resistant transformant. These experiments and others employing DNA isolated from soil samples demonstrate that the system allows reliable and highly sensitive monitoring of nptII genes in transgenic plant DNA and in DNA from environmental sources, such as soil, without the need for prior DNA amplification (e.g. by PCR). Received: 20 May 1997 / Accepted: 17 October 1997  相似文献   

17.
An efficient protocol for Agrobacterium tumefaciens-mediated transformation of four commercial cultivars of Brassica oleracea var. capitata is described. A strain of A. tumefaciens LBA4404 with the neomycin phosphotransferase gene (nptII) and a CaMV 35S-peroxidase gene cassette were used for co-cultivation. Preliminary selection of regenerated transgenic plants was performed on kanamycin-containing medium. The frequency of transgenic plants was calculated on the basis of GUS (β-glucuronidase) activity detected by the histochemical X-gluc test. Tissue-specific GUS expression driven by the peroxidase gene promoter in transgenic plants was analysed by GUS staining. The transformation rates of the commercial cultivars of B. oleracea was higher than in previous reports. Southern blot analysis revealed that integration of marker genes occurred in single and multiple loci in the genome. All transgenic plants grew normally after a brief vernalization period and showed stable inheritance of the marker gene. The present study demonstrates that morphologically normal, fertile transgenic plants of B. oleracea can be obtained. Received: 24 August 1999 / Revision received: 23 November 1999 / Accepted: 3 December  相似文献   

18.
Summary Two commercial wheat cultivars with low embryogenesis efficiencies, AC Karma and Hy417, were transformed by the bombardment of isolated scutella with two gene constructs. Three AC Karma plants (433, 436, and 437) carrying plasmid pRC62 containing a gus:npt fusion gene, and one Hy417 plant (438) carrying plasmid pBARGUS containing a bar gene and a gusA gene were recovered and characterized. Presence of transgenes in T0 and T1 plants was confirmed by both PCR and Southern hybridization. Copy number of transgenes varied from one to six in these four plants. The inheritance of transgenes in the progeny was characterized. The gusA gene and its activity in AC Karma plant 436 and bar gene and its activity in Hy417 plant 438 segregated in the selfed T1 progeny in a Mendelian 3:1 ratio, but gusA gene and its activity in AC Karma plants 433 and 437 segregated in selfed T1 progeny in a non-Mendelian 1:1 ratio. The gusA activity in all three AC Karma plants was stably transmitted to selfed T2 or T3 progenies. The levels of gusA and nptII activities in nine T1 plants from AC Karma plant 437 were also determined. A GusA fluorometric assay indicated that gusA activity in the nine T1 plants increased by 2.5–7.2-fold compared with the nontransformed control, while and NptII ELISA assay detected nptII activity only in two of the nine T1 plants, suggesting the nptII gene was silenced in the other seven T1 plants.  相似文献   

19.
Previously we have demonstrated gene targeting in plants after Agrobacterium-mediated transformation. In these initial experiments a transgenic tobacco line 104 containing a T-DNA insertion with a defective neomycin phosphotransferase (nptII) gene was transformed with a repair construct containing an otherwise defective nptII gene. Homologous recombination between the chromosomally located target and the incoming complementary defective nptII construct generated an intact nptII gene and led to a kanamycin-resistant (Kmr) phenotype. The gene targeting frequency was 1×10–5. In order to compare direct gene transfer and Agrobacterium-mediated transformation with respect to gene targeting we transformed the same transgenic tobacco line 104 via electroporation. A total of 1.35×108 protoplasts were transformed with the repair construct. Out of nearly 221 000 transformed cells 477 Kmr calli were selected. Screening the Kmr calli via PCR for recombination events revealed that in none of these calli gene targeting had occurred. To establish the origin of the high number of Kmr calli in which gene targeting had not occurred we analysed plants regenerated from 24 Kmr calli via PCR and sequence analysis. This revealed that in 21 out of 24 plants analysed the 5-deleted nptII gene was fused to the hygromycin phosphotransferase (hpt) gene that was also present on the repair construct. Sequence analysis of 7 hpt/nptII gene fusions showed that they all contained a continuous open reading frame. The absence of significant homology at the fusion site indicated that fusion occurred via a process of illegitimate recombination. Therefore, illegitimate recombination between an introduced defective gene and another gene present on the repair construct or the chromosome has to be taken into account as a standard byproduct in gene targeting experiments.  相似文献   

20.
Elite white maize lines W506 and M37W were transformed with a selectable marker gene (bar) and a reporter gene (uidA) or the polygalacturonase-inhibiting protein (pgip) gene after bombardment of cultured immature zygotic embryos using the particle inflow gun. Successful transformation with this device did not require a narrow range of parameters, since transformants were obtained from a wide range of treatments, namely pre-culture of the embryos for 4-6 days, bombardment at helium pressures of 700-900 kPa, selection-free culture for 2-4 days after bombardment and selection on medium containing bialaphos at 0.5-2 mg l-1. However, bombardments with helium pressures below 700 kPa yielded no transformants. The culture of immature zygotic embryos of selected elite white maize lines on medium containing 2 mg l-1 2,4-dichlorophenoxyacetic acid and 20 mM L-proline proved to be most successful for the production of regenerable embryogenic calli and for the selection of putative transgenic calli on bialaphos-containing medium after transformation. Transgenic plants were obtained from four independent transformation events as confirmed by Southern blot analysis. Transmission of the bar and uidA genes to the T4 progeny of one of these transformation events was demonstrated by Southern blot analysis and by transgene expression. In this event, the transgenes bar and uidA were inserted in tandem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号